10 research outputs found

    Evoked and Spontaneous Pain Assessment During Tooth Pulp Injury

    Get PDF
    Injury of the tooth pulp is excruciatingly painful and yet the receptors and neural circuit mechanisms that transmit this form of pain remain poorly defined in both the clinic and preclinical rodent models. Easily quantifiable behavioral assessment in the mouse orofacial area remains a major bottleneck in uncovering molecular mechanisms that govern inflammatory pain in the tooth. In this study we sought to address this problem using the Mouse Grimace Scale and a novel approach to the application of mechanical Von Frey hair stimuli. We use a dental pulp injury model that exposes the pulp to the outside environment, a procedure we have previously shown produces inflammation. Using RNAscope technology, we demonstrate an upregulation of genes that contribute to the pain state in the trigeminal ganglia of injured mice. We found that mice with dental pulp injury have greater Mouse Grimace Scores than sham within 24 hours of injury, suggestive of spontaneous pain. We developed a scoring system of mouse refusal to determine thresholds for mechanical stimulation of the face with Von Frey filaments. This method revealed that mice with a unilateral dental injury develop bilateral mechanical allodynia that is delayed relative to the onset of spontaneous pain. This work demonstrates that tooth pain can be quantified in freely behaving mice using approaches common for other types of pain assessment. Harnessing these assays in the orofacial area during gene manipulation should assist in uncovering mechanisms for tooth pulp inflammatory pain and other forms of trigeminal pain. © 2020, The Author(s)

    Cardiac auscultation training of medical students: a comparison of electronic sensor-based and acoustic stethoscopes

    Get PDF
    BACKGROUND: To determine whether the use of an electronic, sensor based stethoscope affects the cardiac auscultation skills of undergraduate medical students. METHODS: Forty eight third year medical students were randomized to use either an electronic stethoscope, or a conventional acoustic stethoscope during clinical auscultation training. After a training period of four months, cardiac auscultation skills were evaluated using four patients with different cardiac murmurs. Two experienced cardiologists determined correct answers. The students completed a questionnaire for each patient. The thirteen questions were weighted according to their relative importance, and a correct answer was credited from one to six points. RESULTS: No difference in mean score was found between the two groups (p = 0.65). Grading and characterisation of murmurs and, if present, report of non existing murmurs were also rated. None of these yielded any significant differences between the groups. CONCLUSION: Whether an electronic or a conventional stethoscope was used during training and testing did not affect the students' performance on a cardiac auscultation test

    Mechanical characteristics of groundnut shell particle reinforced polylactide nano fibre

    Get PDF
    ABSTRACT The PLA-groundnut shell solution is electrospun to produce nanocomposite fibre. The spinneret containing the composite solution was placed 24.7 cm away from the aluminium collector, tilted at an angle of 30 °, and the solution flow rate kept at 1 mL/min. Groundnut Shell particle (GSP) weight fraction used was varied from 3 - 8 wt. %. Particle reinforced nanofibres were formed on the collector from the composite solution at 26 kV. These nanofibres were subjected to tensile test and the result indicates that at 6 wt. % untreated GSP reinforced fibre possessed the best tensile stiffness of 24.62 MPa. This corresponds to 2.201 % increase in Modulus of Elasticity over the unreinforced PLA (1.07 MPa). The 7 wt. % treated GSP fibre showed the least stiffness (0.33 MPa), which is 69 % reduction over that of unreinforced fibre. PLA fibre reinforced with 5 wt. % untreated GSP displayed best blend of properties over the unreinforced with increase of 286 % (4.43 x 10-4 HB), 1,502 % (1.07 MPa), 286 % (0.22 MPa), 6.8 % (0.05 J) and 1,081 % (~ 0.15 MPa) in hardness, stiffness, UTS, energy at break and stress at break respectively. However, ductility decreased by ~33.3 % when compared to the unreinforced (18.27). The 5 wt. % untreated GSP PLA reinforced fibre showed the highest UTS (0.855 MPa). The micrographs showed beads on reinforced fibres, while the virgin PLA showed no beads
    corecore