1,107 research outputs found
Energy Storage in a Hamiltonian System in Partial Contact with a Heat Bath
To understand the mechanism allowing for the long-term storage of excess
energy in proteins, we study a Hamiltonian system consisting of several coupled
pendula in partial contact with a heat bath. It is found that energy storage is
possible when the motion of each pendulum switches between oscillatory
(vibrational) and rotational (phase-slip) modes. The storage time increases
almost exponentially to the square root of the injected energy. The relevance
of our mechanism to protein motors is discussed.Comment: 8 pages, 4 figures, to appear in J.Phys.Soc.Jp
Interaction between Metal Vapor and High Heat Flux Plasmas using High Current Stabilized Arc Plasmas
Global and regional emissions estimates for N2O
We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected discrete air samples in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute of Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7% per year, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally gridded a priori N2O emissions over the 37 years since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in recent years, most likely due to an increase in the use of nitrogenous fertilizers, as has been suggested by previous studies.</p
Spontaneous Oscillations of Collective Molecular Motors
We analyze a simple stochastic model to describe motor molecules which
cooperate in large groups and present a physical mechanism which can lead to
oscillatory motion if the motors are elastically coupled to their environment.
Beyond a critical fuel concentration, the non-moving state of the system
becomes unstable with respect to a mode with angular frequency omega. We
present a perturbative description of the system near the instability and
demonstrate that oscillation frequencies are determined by the typical
timescales of the motors.Comment: 11 pages, Revtex, 4 pages Figure
Self-organization and Mechanical Properties of Active Filament Bundles
A phenomenological description for active bundles of polar filaments is
presented. The activity of the bundle results from crosslinks, that induce
relative displacements between the aligned filaments. Our generic description
is based on momentum conservation within the bundle. By specifying the internal
forces, a simple minimal model for the bundle dynamics is obtained, capturing
generic dynamic behaviors. In particular, contracted states as well as solitary
and oscillatory waves appear through dynamic instabilities. The introduction of
filament adhesion leads to self-organized persistent filament transport.
Furthermore, calculating the tension, homogeneous bundles are shown to be able
to actively contract and to perform work against external forces. Our
description is motivated by dynamic phenomena in the cytoskeleton and could
apply to stress-fibers and self-organization phenomena during cell-locomotion.Comment: 19 pages, 10 figure
The degeneration and destruction of femoral articular cartilage shows a greater degree of deterioration than that of the tibial and patellar articular cartilage in early stage knee osteoarthritis: a cross-sectional study
SummaryObjectiveThe aim of the present study was to examine whether the degenerative and morphological changes of articular cartilage in early stage knee osteoarthritis (OA) occurred equally for both femoral- and tibial- or patellar- articular cartilage using magnetic resonance imaging (MRI)-based analyses.DesignThis cross-sectional study was approved by the ethics committee of our university. Fifty patients with early stage painful knee OA were enrolled. The patients underwent 3.0 T MRI on the affected knee joint. Healthy volunteers who did not show MRI-based OA changes were also recruited as controls (n = 19). The degenerative changes of the articular cartilage were quantified by a T2 mapping analysis, and any structural changes were conducted using Whole Organ Magnetic Resonance Imaging Score (WORMS) technique.ResultsAll patients showed MRI-detected OA morphological changes. The T2 values of femoral condyle (FC) (P < 0.0001) and groove (P = 0.0001) in patients with early stage knee OA were significantly increased in comparison to those in the control, while no significant differences in the T2 values of patellar and tibial plateau (TP) were observed between the patients and the control. The WORMS cartilage and osteophyte scores of the femoral articular cartilage were significantly higher than those in the patellar- (P = 0.001 and P = 0.007, respectively) and tibial- (P = 0.0001 and P < 0.0001, respectively) articular cartilage in the patients with early stage knee OA.ConclusionsThe degradation and destruction of the femoral articular cartilage demonstrated a greater degree of deterioration than those of the tibial- and patellar- articular cartilage in patients with early stage knee OA
- …