359 research outputs found

    Unpacking merger jets: a Bayesian analysis of GW170817, GW190425 and electromagnetic observations of short gamma-ray bursts

    Get PDF
    We present a novel fully Bayesian analysis to constrain short gamma-ray burst jet structures associated with cocoon, wide-angle and simple top-hat jet models, as well as the binary neutron star merger rate. These constraints are made given the distance and inclination information from GW170817, observed flux of GRB170817A, observed rate of short gamma-ray bursts detected by Swift, and the neutron star merger rate inferred from LIGO's first and second observing runs. A separate analysis is conducted where a fitted short gamma-ray burst luminosity function is included to provide further constraints. The jet structure models are further constrained using the observation of GW190425 and we find that the assumption that it produced a GRB170817-like short gamma-ray burst that went undetected due to the jet geometry is consistent with previous observations. We find and quantify evidence for low luminosity and wide-angled jet structuring in the short gamma-ray burst population, independently from afterglow observations, with log Bayes factors of 0.45−0.55 for such models when compared to a classical top-hat jet. Slight evidence is found for a Gaussian jet structure model over all others when the fitted luminosity function is provided, producing log Bayes factors of 0.25−0.9±0.05 when compared to the other models. However without considering GW190425 or the fitted luminosity function, the evidence favours a cocoon-like model with log Bayes factors of 0.14±0.05 over the Gaussian jet structure. We provide new constraints to the binary neutron star merger rates of 1−1300Gpc−3yr−1 or 2−680Gpc−3yr−1 when a fitted luminosity function is assumed

    Wall Crossing and Instantons in Compactified Gauge Theory

    Full text link
    We calculate the leading weak-coupling instanton contribution to the moduli-space metric of N=2 supersymmetric Yang-Mills theory with gauge group SU(2) compactified on R^3 x S^1. The results are in precise agreement with the semiclassical expansion of the exact metric recently conjectured by Gaiotto, Moore and Neitzke based on considerations related to wall-crossing in the corresponding four-dimensional theory.Comment: 24 pages, no figure

    A bayesian inference framework for gamma-ray burst afterglow properties

    Get PDF
    In the field of multi-messenger astronomy, Bayesian inference is commonly adopted to compare the compatibility of models given the observed data. However, to describe a physical system like neutron star mergers and their associated gamma-ray burst (GRB) events, usually more than ten physical parameters are incorporated in the model. With such a complex model, likelihood evaluation for each Monte Carlo sampling point becomes a massive task and requires a significant amount of computational power. In this work, we perform quick parameter estimation on simulated GRB X-ray light curves using an interpolated physical GRB model. This is achieved by generating a grid of GRB afterglow light curves across the parameter space and replacing the likelihood with a simple interpolation function in the high-dimensional grid that stores all light curves. This framework, compared to the original method, leads to a ∼90× speedup per likelihood estimation. It will allow us to explore different jet models and enable fast model comparison in the future

    Inclination Estimates from Off-Axis GRB Afterglow Modelling

    Get PDF
    For gravitational wave (GW) detected neutron star mergers, one of the leading candidates for electromagnetic (EM) counterparts is the afterglow from an ultra-relativistic jet. Where this afterglow is observed, it will likely be viewed off-axis, such as the afterglow following GW170817/GRB 170817A. The temporal behaviour of an off-axis observed GRB afterglow can be used to reveal the lateral jet structure, and statistical model fits can put constraints on the various model free-parameters. Amongst these parameters is the inclination of the system to the line of sight. Along with the GW detection, the afterglow modelling provides the best constraint on the inclination to the line-of-sight and can improve the estimates of cosmological parameters, for example, the Hubble constant, from GW-EM events. However, modelling of the afterglow depends on the assumed jet structure and—often overlooked—the effects of lateral spreading. Here we show how the inclusion of lateral spreading in the afterglow models can affect the estimated inclination of GW-EM events

    Rapid Generation of Kilonova Light Curves Using Conditional Variational Autoencoder

    Get PDF
    The discovery of the optical counterpart, along with the gravitational waves (GWs) from GW170817, of the first binary neutron star merger has opened up a new era for multimessenger astrophysics. Combining the GW data with the optical counterpart, also known as AT 2017gfo and classified as a kilonova, has revealed the nature of compact binary merging systems by extracting enriched information about the total binary mass, the mass ratio, the system geometry, and the equation of state. Even though the detection of kilonovae has brought about a revolution in the domain of multimessenger astronomy, there has been only one kilonova from a GW-detected binary neutron star merger event confirmed so far, and this limits the exact understanding of the origin and propagation of the kilonova. Here, we use a conditional variational autoencoder (CVAE) trained on light-curve data from two kilonova models having different temporal lengths, and consequently, generate kilonova light curves rapidly based on physical parameters of our choice with good accuracy. Once the CVAE is trained, the timescale for light-curve generation is of the order of a few milliseconds, which is a speedup of the generation of light curves by 1000 times as compared to the simulation. The mean squared error between the generated and original light curves is typically 0.015 with a maximum of 0.08 for each set of considered physical parameters, while having a maximum of ≈0.6 error across the whole parameter space. Hence, implementing this technique provides fast and reliably accurate results

    Biphasic Electrical Currents Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem Cells

    Get PDF
    The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control - however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs) significantly increased the proliferation of fetal neural stem cells (NSCs). Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases

    Biphasic Electrical Currents Stimulation Promotes both Proliferation and Differentiation of Fetal Neural Stem Cells

    Get PDF
    The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control - however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs) significantly increased the proliferation of fetal neural stem cells (NSCs). Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases

    Physics, Astrophysics and Cosmology with Gravitational Waves

    Get PDF
    Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.Comment: 137 pages, 16 figures, Published version <http://www.livingreviews.org/lrr-2009-2

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
    corecore