20 research outputs found

    Interchromosomal Duplications on the Bactrocera oleae Y Chromosome Imply a Distinct Evolutionary Origin of the Sex Chromosomes Compared to Drosophila

    Get PDF
    BACKGROUND: Diptera have an extraordinary variety of sex determination mechanisms, and Drosophila melanogaster is the paradigm for this group. However, the Drosophila sex determination pathway is only partially conserved and the family Tephritidae affords an interesting example. The tephritid Y chromosome is postulated to be necessary to determine male development. Characterization of Y sequences, apart from elucidating the nature of the male determining factor, is also important to understand the evolutionary history of sex chromosomes within the Tephritidae. We studied the Y sequences from the olive fly, Bactrocera oleae. Its Y chromosome is minute and highly heterochromatic, and displays high heteromorphism with the X chromosome. METHODOLOGY/PRINCIPAL FINDINGS: A combined Representational Difference Analysis (RDA) and fluorescence in-situ hybridization (FISH) approach was used to investigate the Y chromosome to derive information on its sequence content. The Y chromosome is strewn with repetitive DNA sequences, the majority of which are also interdispersed in the pericentromeric regions of the autosomes. The Y chromosome appears to have accumulated small and large repetitive interchromosomal duplications. The large interchromosomal duplications harbour an importin-4-like gene fragment. Apart from these importin-4-like sequences, the other Y repetitive sequences are not shared with the X chromosome, suggesting molecular differentiation of these two chromosomes. Moreover, as the identified Y sequences were not detected on the Y chromosomes of closely related tephritids, we can infer divergence in the repetitive nature of their sequence contents. CONCLUSIONS/SIGNIFICANCE: The identification of Y-linked sequences may tell us much about the repetitive nature, the origin and the evolution of Y chromosomes. We hypothesize how these repetitive sequences accumulated and were maintained on the Y chromosome during its evolutionary history. Our data reinforce the idea that the sex chromosomes of the Tephritidae may have distinct evolutionary origins with respect to those of the Drosophilidae and other Dipteran families

    Stable Isotope Biogeochemistry of Seabird Guano Fertilization: Results from Growth Chamber Studies with Maize (Zea Mays)

    Get PDF
    Stable isotope analysis is being utilized with increasing regularity to examine a wide range of issues (diet, habitat use, migration) in ecology, geology, archaeology, and related disciplines. A crucial component to these studies is a thorough understanding of the range and causes of baseline isotopic variation, which is relatively poorly understood for nitrogen (δ(15)N). Animal excrement is known to impact plant δ(15)N values, but the effects of seabird guano have not been systematically studied from an agricultural or horticultural standpoint.This paper presents isotopic (δ(13)C and δ(15)N) and vital data for maize (Zea mays) fertilized with Peruvian seabird guano under controlled conditions. The level of (15)N enrichment in fertilized plants is very large, with δ(15)N values ranging between 25.5 and 44.7‰ depending on the tissue and amount of fertilizer applied; comparatively, control plant δ(15)N values ranged between -0.3 and 5.7‰. Intraplant and temporal variability in δ(15)N values were large, particularly for the guano-fertilized plants, which can be attributed to changes in the availability of guano-derived N over time, and the reliance of stored vs. absorbed N. Plant δ(13)C values were not significantly impacted by guano fertilization. High concentrations of seabird guano inhibited maize germination and maize growth. Moreover, high levels of seabird guano greatly impacted the N metabolism of the plants, resulting in significantly higher tissue N content, particularly in the stalk.The results presented in this study demonstrate the very large impact of seabird guano on maize δ(15)N values. The use of seabird guano as a fertilizer can thus be traced using stable isotope analysis in food chemistry applications (certification of organic inputs). Furthermore, the fertilization of maize with seabird guano creates an isotopic signature very similar to a high-trophic level marine resource, which must be considered when interpreting isotopic data from archaeological material

    Genomic changes associated with somaclonal variation in banana (Musa spp.)

    No full text
    The molecular basis of somaclonal variation is not precisely known, but both genetic and epigenetic mechanisms have been proposed. The available evidence points toward the existence of labile portions of the genome that can be modulated when the cells undergo the stress of tissue culture. Therefore, the hypothesis that there are identifiable and predictable DNA markers for the early diagnosis of somaclonal variation has been tested. Representational difference analysis was used to isolate unique fragments of DNA (difference products) between visible culture-induced off-type and normal banana plants. Markers generated from six difference products differentiated between some of the off-type and normal pairs. The genomic region around one of these difference products has been extensively characterized and has a high degree of polymorphism, with variation in up to 10% of the nucleotides sequenced in the region. This same region has been shown to vary in other pairs of off-type and normal banana plants derived from tissue culture as well as in plants propagated commercially in vitro. The data are consistent with the hypothesis that there is at least one particularly labile portion of the genome that is especially susceptible to the stress imposed during tissue culture and that is associated with higher rearrangement and mutation rates than other portions of the genome. Consequently, the regions that are reported here have the potential to be used as early detection tools for identifying somaclonal variants

    Kolažirana fotografija

    Full text link
    peer reviewedChemical composition of banana rachis from three varieties (Grande naine, Pelipita, and CRBP969) was analyzed, and the genotype contribution to composition variability was investigated. Wet chemistry and instrumental analysis procedures (X-ray diffraction, 31P NMR spectroscopy, and thermogravimetry) were used. Some significant differences were found among the three genotypes: GN-AAA genotype was found to be significantly the highest in ash fraction (30.16 %) and the lowest in acid insoluble lignin (6.58 %) at 95 % confidence level. It showed also the highest content in potassium (43.5 % in ash). Implication of compositional differences on valorization efficiency by biochemical or thermochemical pathways was investigated. For this purpose, correlation coefficients between compositional characteristics and yields in volatile compounds from pyrolysis and glucose yields from enzymatic saccharification were analyzed. Ash content was revealed to be the main drawback parameter for volatile yields from pyrolysis (r=−0.93), while for glucose yields during saccharification were limited mainly by the content in guaiacyl units of the lignin fraction (r=−0.98). However, a strong and positive correlation was established between the volatiles yield and the acid insoluble lignin content (r=0.98) Thus, according to these observations and based on their compositional significant differences, GN-AAA was the better candidate for bioconversion pathway while PPT-ABB and CRBP969-AAAB samples were shown to be better candidates for thermochemical conversion pathway. This work gives important preliminary information for considering banana rachis as an interesting feedstock candidate for biorefinery
    corecore