15 research outputs found

    Induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as neoadjuvant treatment for locally recurrent rectal cancer: study protocol of a multicentre, open-label, parallel-arms, randomized controlled study (PelvEx II)

    Get PDF
    Background A resection with clear margins (R0 resection) is the most important prognostic factor in patients with locally recurrent rectal cancer (LRRC). However, this is achieved in only 60 per cent of patients. The aim of this study is to investigate whether the addition of induction chemotherapy to neoadjuvant chemo(re)irradiation improves the R0 resection rate in LRRC. Methods This multicentre, international, open-label, phase III, parallel-arms study will enrol 364 patients with resectable LRRC after previous partial or total mesorectal resection without synchronous distant metastases or recent chemo- and/or radiotherapy treatment. Patients will be randomized to receive either induction chemotherapy (three 3-week cycles of CAPOX (capecitabine, oxaliplatin), four 2-week cycles of FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) or FOLFORI (5-fluorouracil, leucovorin, irinotecan)) followed by neoadjuvant chemoradiotherapy and surgery (experimental arm) or neoadjuvant chemoradiotherapy and surgery alone (control arm). Tumours will be restaged using MRI and, in the experimental arm, a further cycle of CAPOX or two cycles of FOLFOX/FOLFIRI will be administered before chemoradiotherapy in case of stable or responsive disease. The radiotherapy dose will be 25 × 2.0 Gy or 28 × 1.8 Gy in radiotherapy-naive patients, and 15 × 2.0 Gy in previously irradiated patients. The concomitant chemotherapy agent will be capecitabine administered twice daily at a dose of 825 mg/m2 on radiotherapy days. The primary endpoint of the study is the R0 resection rate. Secondary endpoints are long-term oncological outcomes, radiological and pathological response, toxicity, postoperative complications, costs, and quality of life. Discussion This trial protocol describes the PelvEx II study. PelvEx II, designed as a multicentre, open-label, phase III, parallel-arms study, is the first randomized study to compare induction chemotherapy followed by neoadjuvant chemo(re)irradiation and surgery with neoadjuvant chemo(re)irradiation and surgery alone in patients with locally recurrent rectal cancer, with the aim of improving the number of R0 resections

    Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans

    No full text
    In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved

    Highly polygenic variation in environmental perception determines dauer larvae formation in growing populations of Caenorhabditis elegans

    No full text
    BACKGROUND: Determining how complex traits are genetically controlled is a requirement if we are to predict how they evolve and how they might respond to selection. This requires understanding how distinct, and often more simple, life history traits interact and change in response to environmental conditions. In order to begin addressing such issues, we have been analyzing the formation of the developmentally arrested dauer larvae of Caenorhabditis elegans under different conditions. RESULTS: We find that 18 of 22 previously identified quantitative trait loci (QTLs) affecting dauer larvae formation in growing populations, assayed by determining the number of dauer larvae present at food patch exhaustion, can be recovered under various environmental conditions. We also show that food patch size affects both the ability to detect QTLs and estimates of effect size, and demonstrate that an allele of nath-10 affects dauer larvae formation in growing populations. To investigate the component traits that affect dauer larvae formation in growing populations we map, using the same introgression lines, QTLs that affect dauer larvae formation in response to defined amounts of pheromone. This identifies 36 QTLs, again demonstrating the highly polygenic nature of the genetic variation underlying dauer larvae formation. CONCLUSIONS: These data indicate that QTLs affecting the number of dauer larvae at food exhaustion in growing populations of C. elegans are highly reproducible, and that nearly all can be explained by variation affecting dauer larvae formation in response to defined amounts of pheromone. This suggests that most variation in dauer larvae formation in growing populations is a consequence of variation in the perception of the food and pheromone environment (i.e. chemosensory variation) and in the integration of these cues

    Do country-level institutional frameworks and interfirm governance arrangements substitute or complement in international business relationships?

    No full text
    corecore