1,980 research outputs found

    A comparison of 7 random-effects models for meta-analyses that estimate the summary odds ratio

    Get PDF
    Comparative trials that report binary outcome data are commonly pooled in systematic reviews and meta-analyses. This type of data can be presented as a series of 2-by-2 tables. The pooled odds ratio is often presented as the outcome of primary interest in the resulting meta-analysis. We examine the use of 7 models for random-effects meta-analyses that have been proposed for this purpose. The first of these models is the conventional one that uses normal within-study approximations and a 2-stage approach. The other models are generalised linear mixed models that perform the analysis in 1 stage and have the potential to provide more accurate inference. We explore the implications of using these 7 models in the context of a Cochrane Review, and we also perform a simulation study. We conclude that generalised linear mixed models can result in better statistical inference than the conventional 2-stage approach but also that this type of model presents issues and difficulties. These challenges include more demanding numerical methods and determining the best way to model study specific baseline risks. One possible approach for analysts is to specify a primary model prior to performing the systematic review but also to present the results using other models in a sensitivity analysis. Only one of the models that we investigate is found to perform poorly so that any of the other models could be considered for either the primary or the sensitivity analysis

    Deformed Skyrme Crystals

    Full text link
    The Skyrme crystal, a solution of the Skyrme model, is the lowest energy-per-charge configuration of skyrmions seen so far. Our numerical investigations show that, as the period in various space directions is changed, one obtains various other configurations, such as a double square wall, and parallel vortex-like solutions. We also show that there is a sudden "phase transition" between a Skyrme crystal and the charge 4 skyrmion with cubic symmetry as the period is gradually increased in all three space directions.Comment: 13 pages, 6 figures. To be published in JHE

    General Form of the Color Potential Produced by Color Charges of the Quark

    Full text link
    Constant electric charge ee satisfies the continuity equation ∂μjμ(x)=0\partial_\mu j^{\mu}(x)= 0 where jμ(x)j^\mu(x) is the current density of the electron. However, the Yang-Mills color current density jμa(x)j^{\mu a}(x) of the quark satisfies the equation Dμ[A]jμa(x)=0D_\mu[A] j^{\mu a}(x)= 0 which is not a continuity equation (∂μjμa(x)≠0\partial_\mu j^{\mu a}(x)\neq 0) which implies that a color charge qa(t)q^a(t) of the quark is not constant but it is time dependent where a=1,2,...8a=1,2,...8 are color indices. In this paper we derive general form of color potential produced by color charges of the quark. We find that the general form of the color potential produced by the color charges of the quark at rest is given by \Phi^a(x) =A_0^a(t,{\bf x}) =\frac{q^b(t-\frac{r}{c})}{r}\[\frac{{\rm exp}[g\int dr \frac{Q(t-\frac{r}{c})}{r}] -1}{g \int dr \frac{Q(t-\frac{r}{c})}{r}}\]_{ab} where drdr integration is an indefinite integration, ~~ Qab(τ0)=fabdqd(τ0)Q_{ab}(\tau_0)=f^{abd}q^d(\tau_0), ~~r=∣x⃗−X⃗(τ0)∣r=|{\vec x}-{\vec X}(\tau_0)|, ~~τ0=t−rc\tau_0=t-\frac{r}{c} is the retarded time, ~~cc is the speed of light, ~~X⃗(τ0){\vec X}(\tau_0) is the position of the quark at the retarded time and the repeated color indices b,db,d(=1,2,...8) are summed. For constant color charge qaq^a we reproduce the Coulomb-like potential Φa(x)=qar\Phi^a(x)=\frac{q^a}{r} which is consistent with the Maxwell theory where constant electric charge ee produces the Coulomb potential Φ(x)=er\Phi(x)=\frac{e}{r}.Comment: Final version, two more sections added, 45 pages latex, accepted for publication in JHE

    Combustion in thermonuclear supernova explosions

    Full text link
    Type Ia supernovae are associated with thermonuclear explosions of white dwarf stars. Combustion processes convert material in nuclear reactions and release the energy required to explode the stars. At the same time, they produce the radioactive species that power radiation and give rise to the formation of the observables. Therefore, the physical mechanism of the combustion processes, as reviewed here, is the key to understand these astrophysical events. Theory establishes two distinct modes of propagation for combustion fronts: subsonic deflagrations and supersonic detonations. Both are assumed to play an important role in thermonuclear supernovae. The physical nature and theoretical models of deflagrations and detonations are discussed together with numerical implementations. A particular challenge arises due to the wide range of spatial scales involved in these phenomena. Neither the combustion waves nor their interaction with fluid flow and instabilities can be directly resolved in simulations. Substantial modeling effort is required to consistently capture such effects and the corresponding techniques are discussed in detail. They form the basis of modern multidimensional hydrodynamical simulations of thermonuclear supernova explosions. The problem of deflagration-to-detonation transitions in thermonuclear supernova explosions is briefly mentioned.Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A. Alsabti and P. Murdin, Springer. 24 pages, 4 figure

    Changes in microphytobenthos fluorescence over a tidal cycle: implications for sampling designs

    Get PDF
    Intertidal microphytobenthos (MPB) are important primary producers and provide food for herbivores in soft sediments and on rocky shores. Methods of measuring MPB biomass that do not depend on the time of collection relative to the time of day or tidal conditions are important in any studies that need to compare temporal or spatial variation, effects of abiotic factors or activity of grazers. Pulse amplitude modulated (PAM) fluorometry is often used to estimate biomass of MPB because it is a rapid, non-destructive method, but it is not known how measures of fluorescence are altered by changing conditions during a period of low tide. We investigated this experimentally using in situ changes in minimal fluorescence (F) on a rocky shore and on an estuarine mudflat around Sydney (Australia), during low tides. On rocky shores, the time when samples are taken during low tide had little direct influence on measures of fluorescence as long as the substratum is dry. Wetness from wave-splash, seepage from rock pools, run-off, rainfall, etc., had large consequences for any comparisons. On soft sediments, fluorescence was decreased if the sediment dried out, as happens during low-spring tides on particularly hot and dry days. Surface water affected the response of PAM and therefore measurements used to estimate MPB, emphasising the need for care to ensure that representative sampling is done during low tide

    Baryonic Popcorn

    Full text link
    In the large N limit cold dense nuclear matter must be in a lattice phase. This applies also to holographic models of hadron physics. In a class of such models, like the generalized Sakai-Sugimoto model, baryons take the form of instantons of the effective flavor gauge theory that resides on probe flavor branes. In this paper we study the phase structure of baryonic crystals by analyzing discrete periodic configurations of such instantons. We find that instanton configurations exhibit a series of "popcorn" transitions upon increasing the density. Through these transitions normal (3D) lattices expand into the transverse dimension, eventually becoming a higher dimensional (4D) multi-layer lattice at large densities. We consider 3D lattices of zero size instantons as well as 1D periodic chains of finite size instantons, which serve as toy models of the full holographic systems. In particular, for the finite-size case we determine solutions of the corresponding ADHM equations for both a straight chain and for a 2D zigzag configuration where instantons pop up into the holographic dimension. At low density the system takes the form of an "abelian anti-ferromagnetic" straight periodic chain. Above a critical density there is a second order phase transition into a zigzag structure. An even higher density yields a rich phase space characterized by the formation of multi-layer zigzag structures. The finite size of the lattices in the transverse dimension is a signal of an emerging Fermi sea of quarks. We thus propose that the popcorn transitions indicate the onset of the "quarkyonic" phase of the cold dense nuclear matter.Comment: v3, 80 pages, 18 figures, footnotes 5 and 7 added, version to appear in the JHE

    The Gluonic Field of a Heavy Quark in Conformal Field Theories at Strong Coupling

    Full text link
    We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in N=4 super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator tr[F^2+...] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3+1 dimensions with a dual gravity formulation.Comment: 1+38 pages, 16 eps figures; v2: completed affiliation; v3: corrected typo, version to appear in JHE

    The sign problem across the QCD phase transition

    Full text link
    The average phase factor of the QCD fermion determinant signals the strength of the QCD sign problem. We compute the average phase factor as a function of temperature and baryon chemical potential using a two-flavor NJL model. This allows us to study the strength of the sign problem at and above the chiral transition. It is discussed how the UA(1)U_A(1) anomaly affects the sign problem. Finally, we study the interplay between the sign problem and the endpoint of the chiral transition.Comment: 9 pages and 9 fig
    • …
    corecore