126 research outputs found

    Galactic and Extragalactic Samples of Supernova Remnants: How They Are Identified and What They Tell Us

    Full text link
    Supernova remnants (SNRs) arise from the interaction between the ejecta of a supernova (SN) explosion and the surrounding circumstellar and interstellar medium. Some SNRs, mostly nearby SNRs, can be studied in great detail. However, to understand SNRs as a whole, large samples of SNRs must be assembled and studied. Here, we describe the radio, optical, and X-ray techniques which have been used to identify and characterize almost 300 Galactic SNRs and more than 1200 extragalactic SNRs. We then discuss which types of SNRs are being found and which are not. We examine the degree to which the luminosity functions, surface-brightness distributions and multi-wavelength comparisons of the samples can be interpreted to determine the class properties of SNRs and describe efforts to establish the type of SN explosion associated with a SNR. We conclude that in order to better understand the class properties of SNRs, it is more important to study (and obtain additional data on) the SNRs in galaxies with extant samples at multiple wavelength bands than it is to obtain samples of SNRs in other galaxiesComment: Final 2016 draft of a chapter in "Handbook of Supernovae" edited by Athem W. Alsabti and Paul Murdin. Final version available at https://doi.org/10.1007/978-3-319-20794-0_90-

    Eukaryote DIRS1-like retrotransposons: an overview

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DIRS1-like elements compose one superfamily of tyrosine recombinase-encoding retrotransposons. They have been previously reported in only a few diverse eukaryote species, describing a patchy distribution, and little is known about their origin and dynamics. Recently, we have shown that these retrotransposons are common among decapods, which calls into question the distribution of DIRS1-like retrotransposons among eukaryotes.</p> <p>Results</p> <p>To determine the distribution of DIRS1-like retrotransposons, we developed a new computational tool, ReDoSt, which allows us to identify well-conserved DIRS1-like elements. By screening 274 completely sequenced genomes, we identified more than 4000 DIRS1-like copies distributed among 30 diverse species which can be clustered into roughly 300 families. While the diversity in most species appears restricted to a low copy number, a few bursts of transposition are strongly suggested in certain species, such as <it>Danio rerio </it>and <it>Saccoglossus kowalevskii</it>.</p> <p>Conclusion</p> <p>In this study, we report 14 new species and 8 new higher taxa that were not previously known to harbor DIRS1-like retrotransposons. Now reported in 61 species, these elements appear widely distributed among eukaryotes, even if they remain undetected in streptophytes and mammals. Especially in unikonts, a broad range of taxa from Cnidaria to Sauropsida harbors such elements. Both the distribution and the similarities between the DIRS1-like element phylogeny and conventional phylogenies of the host species suggest that DIRS1-like retrotransposons emerged early during the radiation of eukaryotes.</p

    Emergence of high drug resistant bacterial isolates from patients with health care associated infections at Jimma University medical center: a cross sectional study

    Get PDF
    Background: The rates of resistant microorganisms which complicate the management of healthcare associated infections (HAIs) are increasing worldwide and getting more serious in developing countries. The objective of this study was to describe microbiological features and resistance profiles of bacterial pathogens of HAIs in Jimma University Medical Center (JUMC) in Ethiopia.Methods: Institution based cross sectional study was carried out on hospitalized patients from May to September, 2016 in JUMC. Different clinical specimens were collected from patients who were suspected to hospital acquired infections. The specimens were processed to identify bacterial etiologies following standard microbiological methods. Antibacterial susceptibility was determined in vitro by Kirby-Bauer disk diffusion method following Clinical and Laboratory Standards Institute guidelines.Results: Overall, 126 bacterial etiologies were isolated from 118 patients who had HAIs. Of these, 100 (79.4%) were gram negative and the remaining were gram positive. The most common isolates were Escherichia coli 31(24.6%), Klebsiella species 30(23.8%) and Staphylococcus aureus 26 (20.6%). Of 126 bacterial isolates, 38 (30.2%), 52 (41.3%), and 24 (19%) were multidrug-resistant (MDR, resistant to at least one agent in three or more antimicrobial categories), extensively drug resistant (XDR, resistant to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories), pan-drug resistant (PDR, resistant to all antibiotic classes) respectively. More than half of isolated gram-negative rods (51%) were positive for extended spectrum beta-lactamase (ESBL) and/or AmpC; and 25% of gram negative isolates were also resistant to carbapenem antibiotics.Conclusions: The pattern of drug resistant bacteria in patients with healthcare associated infection at JUMC is alarming. This calls for coordinated efforts from all stakeholders to prevent HAIs and drug resistance in the study setting

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore