49 research outputs found

    Highly Frequent Mutations in Negative Regulators of Multiple Virulence Genes in Group A Streptococcal Toxic Shock Syndrome Isolates

    Get PDF
    Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock and multiorgan failure; it has a high mortality rate. Although a number of studies have attempted to determine the crucial factors behind the onset of STSS, the responsible genes in group A Streptococcus have not been clarified. We previously reported that mutations of csrS/csrR genes, a two-component negative regulator system for multiple virulence genes of Streptococcus pyogenes, are found among the isolates from STSS patients. In the present study, mutations of another negative regulator, rgg, were also found in clinical isolates of STSS patients. The rgg mutants from STSS clinical isolates enhanced lethality and impaired various organs in the mouse models, similar to the csrS mutants, and precluded their being killed by human neutrophils, mainly due to an overproduction of SLO. When we assessed the mutation frequency of csrS, csrR, and rgg genes among S. pyogenes isolates from STSS (164 isolates) and non-invasive infections (59 isolates), 57.3% of the STSS isolates had mutations of one or more genes among three genes, while isolates from patients with non-invasive disease had significantly fewer mutations in these genes (1.7%). The results of the present study suggest that mutations in the negative regulators csrS/csrR and rgg of S. pyogenes are crucial factors in the pathogenesis of STSS, as they lead to the overproduction of multiple virulence factors

    Derivation of a Triple Mosaic Adenovirus for Cancer Gene Therapy

    Get PDF
    A safe and efficacious cancer medicine is necessary due to the increasing population of cancer patients whose particular diseases cannot be cured by the currently available treatment. Adenoviral (Ad) vectors represent a promising therapeutic medicine for human cancer therapy. However, several improvements are needed in order for Ad vectors to be effective cancer therapeutics, which include, but are not limited to, improvement of cellular uptake, enhanced cancer cell killing activity, and the capability of vector visualization and tracking once injected into the patients. To this end, we attempted to develop an Ad as a multifunctional platform incorporating targeting, imaging, and therapeutic motifs. In this study, we explored the utility of this proposed platform by generating an Ad vector containing the poly-lysine (pK), the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK), and the monomeric red fluorescent protein (mRFP1) as targeting, tumor cell killing, and imaging motifs, respectively. Our study herein demonstrates the generation of the triple mosaic Ad vector with pK, HSV-1 TK, and mRFP1 at the carboxyl termini of Ad minor capsid protein IX (pIX). In addition, the functionalities of pK, HSV-1 TK, and mRFP1 proteins on the Ad vector were retained as confirmed by corresponding functional assays, indicating the potential multifunctional application of this new Ad vector for cancer gene therapy. The validation of the triple mosaic Ad vectors also argues for the ability of pIX modification as a base for the development of multifunctional Ad vectors

    Genetic Incorporation of Human Metallothionein into the Adenovirus Protein IX for Non-Invasive SPECT Imaging

    Get PDF
    As the limits of existing treatments for cancer are recognized, clearly novel therapies must be considered for successful treatment; cancer therapy using adenovirus vectors is a promising strategy. However tracking the biodistribution of adenovirus vectors in vivo is limited to invasive procedures such as biopsies, which are error prone, non-quantitative, and do not give a full representation of the pharmacokinetics involved. Current non-invasive imaging strategies using reporter gene expression have been applied to analyze adenoviral vectors. The major drawback to approaches that tag viruses with reporter genes is that these systems require initial viral infection and subsequent cellular expression of a reporter gene to allow non-invasive imaging. As an alternative to conventional vector detection techniques, we developed a specific genetic labeling system whereby an adenoviral vector incorporates a fusion between capsid protein IX and human metallothionein. Our study herein clearly demonstrates our ability to rescue viable adenoviral particles that display functional metallothionein (MT) as a component of their capsid surface. We demonstrate the feasibility of 99mTc binding in vitro to the pIX-MT fusion on the capsid of adenovirus virions using a simple transchelation reaction. SPECT imaging of a mouse after administration of a 99mTc-radiolabeled virus showed clear localization of radioactivity to the liver. This result strongly supports imaging using pIX-MT, visualizing the normal biodistribution of Ad primarily to the liver upon injection into mice. The ability we have developed to view real-time biodistribution in their physiological milieu represents a significant tool to study adenovirus biology in vivo

    HIV Antigen Incorporation within Adenovirus Hexon Hypervariable 2 for a Novel HIV Vaccine Approach

    Get PDF
    Adenoviral (Ad) vectors have been used for a variety of vaccine applications including cancer and infectious diseases. Traditionally, Ad-based vaccines are designed to express antigens through transgene expression of a given antigen. However, in some cases these conventional Ad-based vaccines have had sub-optimal clinical results. These sub-optimal results are attributed in part to pre-existing Ad serotype 5 (Ad5) immunity. In order to circumvent the need for antigen expression via transgene incorporation, the “antigen capsid-incorporation” strategy has been developed and used for Ad-based vaccine development in the context of a few diseases. This strategy embodies the incorporation of antigenic peptides within the capsid structure of viral vectors. The major capsid protein hexon has been utilized for these capsid incorporation strategies due to hexon's natural role in the generation of anti-Ad immune response and its numerical representation within the Ad virion. Using this strategy, we have developed the means to incorporate heterologous peptide epitopes specifically within the major surface-exposed domains of the Ad capsid protein hexon. Our study herein focuses on generation of multivalent vaccine vectors presenting HIV antigens within the Ad capsid protein hexon, as well as expressing an HIV antigen as a transgene. These novel vectors utilize HVR2 as an incorporation site for a twenty-four amino acid region of the HIV membrane proximal ectodomain region (MPER), derived from HIV glycoprotein gp41 (gp41). Our study herein illustrates that our multivalent anti-HIV vectors elicit a cellular anti-HIV response. Furthermore, vaccinations with these vectors, which present HIV antigens at HVR2, elicit a HIV epitope-specific humoral immune response

    Immunization with recombinant vaccinia viruses expressing structural and part of the nonstructural region of tick-borne encephalitis virus cDNA protect mice against lethal encephalitis

    No full text
    Three recombinant vaccinia viruses containing different fragments of tick-borne encephalitis virus (TBEV) cDNA representing the 5'-noncoding region (5'NCR), all structural and part of the nonstructural regions were constructed, Western blot analysis showed that E and NS1 proteins were expressed and processed correctly in cells infected with recombinant viruses vC-NS1 (coding for C-prM-E-NS1 region) and vC-NS3 (coding for C-prM-E-NS1-NS2A-NS2B-NS3 region). In contrast, in cells infected with recombinant virus v5'C-NS2A (coding for 5'NCR and C-prM-E-NS1-NS2A regions) expression of NS1 protein was greatly reduced and no E protein was detected, Immunization of mice with vC-NS3 induced high levels of TBEV-specific antibodies and protected them against intraperitoneal challenge with 10(7) LD(50) of TBEV. The level of protection was very similar to the level of protection achieved by immunization with commercially available inactivated TBEV vaccine, Although the immunization of mice with recombinants vC-NS1 and v5'C-NS2A induced much lower levels of TBEV-specific antibodies, they were still protected against intraperitoneal challenge with 10(4) and 10(3.6) LD(50) of TBEV, respectively. The high level of protection against TBEV infection achieved by the immunization of mice with the recombinant vaccinia virus vC-NS3 makes this virus a very attractive candidate for development of a live recombinant vaccine against TBEV

    Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus

    No full text
    Purpose: Diabetic retinopathy (DR) can lead to significant vision loss and blindness and has a particularly high prevalence in patients with type 1 diabetes (DM1). In this study, we investigate quantitative differences in optical coherence tomography angiography (OCTA) data between DM1 patients with no or mild signs of retinopathy and non-diabetic subjects. Methods: Optical coherence tomography angiography (OCTA) imaging was performed on DM1 patients with no or mild nonproliferative diabetic retinopathy and healthy, age-matched controls. Parafoveal vessel density and foveal avascular zone (FAZ) area in the deep capillary plexus (DCP) and superficial capillary plexus (SCP) were calculated with automated quantification software and compared between patient cohorts. Results: A significant decrease in parafoveal vessel density was seen in the DCP of DM1 patients compared to non-diabetic controls (57.0 ± 3.3% versus 60.7 ± 2.4%, p < 0.001). There was no significant difference in SCP parafoveal vessel density, DCP FAZ area, or SCP FAZ area between cohorts. Conclusion: M1 patients with no or mild signs of retinopathy have reduced parafoveal vessel density in the DCP on OCTA when compared to non-diabetic controls. These OCTA findings suggest that parafoveal capillary nonperfusion is an early process in DM1-related retinal changes and occurs initially at the level of the DCP. Further investigation is needed to understand the prognostic role of these vascular changes
    corecore