253 research outputs found

    Palms and trees resist extreme drought in Amazon forests with shallow water tables

    Get PDF
    1. The intensity and frequency of severe droughts in the Amazon region has increase in recent decades. These extreme events are associated with changes in forest dynamics, biomass and floristic composition. However, most studies of drought response have focused on upland forests with deep water tables, which may be especially sensitive to drought. Palms, which tend to dominate the less well‐drained soils, have also been neglected. The relative neglect of shallow water tables and palms is a significant concern for our understanding of tropical drought impacts, especially as one third of Amazon forests grow on shallow water tables (<5m deep). 2. We evaluated the drought response of palms and trees in forests distributed over a 600 km transect in central‐southern Amazonia, where the landscape is dominated by shallow water table forests. We compared vegetation dynamics before and following the 2015–16 El Nino drought, the hottest and driest on record for the region (−214 mm of cumulative water deficit). 3. We observed no change in stand mortality rates and no biomass loss in response to drought in these forests. Instead, we observed an increase in recruitment rates, which doubled to 6.78% y‐1 ± 4.40 (mean ± SD) during 2015–16 for palms and increased by half for trees (to 2.92% y‐1 ± 1.21), compared to rates in the pre‐El‐Nino interval. Within these shallow water table forests, mortality and recruitment rates varied as a function of climatic drought intensity and water table depth for both palms and trees, with mortality being greatest in climatically and hydrologically wetter environments and recruitment greatest in drier environments. Across our transect there was a significant increase over time in tree biomass. 4. Synthesis: Our results indicate that forests growing over shallow water tables – relatively under‐studied vegetation that nonetheless occupies one‐third of Amazon forests ‐ are remarkably resistant to drought. These findings are consistent with the hypothesis that local hydrology and its interactions with climate strongly constrain forest drought effects, and has implications for climate change feedbacks. This work enhances our understanding of integrated drought effects on tropical forest dynamics and highlights the importance of incorporating neglected forest types into both the modeling of forest climate responses and into public decisions about priorities for conservation

    Single nucleotide polymorphisms of the genes IL-2, IL-2RB, and JAK3 in patients with cutaneous leishmaniasis caused by Leishmania (V.) guyanensis in Manaus, Amazonas, Brazil

    Get PDF
    Leishmaniasis is a disease caused by intracellular protozoan parasites of the genus Leishmania. In endemic areas, only a portion of exposed subjects develops cutaneous leishmaniasis (CL), suggesting that the genetic inheritance of the host plays a vital role in both resistance and susceptibility to the disease. Interleukin-2 (IL-2) is a cytokine that plays a central role in the regulation of the immune response in infection through the axis IL-2/IL-2R (receptor) complex, triggering a series of intracellular events, among which the signaling of Janus kinase/signal transducers and activators of transcription (JAK-STAT). The present study aimed at verifying the possible relationship between single nucleotide polymorphism (s) (SNP s) in the genes IL-2, IL-2RB, and JAK3 in subjects with CL caused by Leishmania guyanensis in the city of Manaus, state of Amazonas, Brazil. 820 patients with CL and 850 healthy subjects (control group) coming from the same endemic areas as the patients were examined. The SNPs -2425G/A (rs4833248) and -330 T/G (rs2069762), located in the IL-2 gene promoter region, seem to influence the expression of the gene and the SNP +10558G/A (rs1003694) and +13295T/C (rs3212760) located in the 3rd intron of the IL-2RB gene and the 13th intron of the JAK3 gene, respectively, were studied by PCR-RFLP. Genotypes and alleles frequencies were obtained by direct counting. For the comparison between the two groups, the χ2 test with OR (odds ratio) and the 95% confidence interval (CI) were used. Similar genotypes and alleles frequencies for the different SNPs were observed in both patients with CL and healthy controls. Comparison of genotypic and allelic frequency between patients with CL and healthy subjects did not show any difference. These polymorphisms do not predict susceptibility to, or protection against the development of CL caused by L. guyanensis in the Amazonas. © 2019 de AraĂșjo Santos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    249 TP53 mutation has high prevalence and is correlated with larger and poorly differentiated HCC in Brazilian patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ser-249 TP53 mutation (249<sup>Ser</sup>) is a molecular evidence for aflatoxin-related carcinogenesis in Hepatocellular Carcinoma (HCC) and it is frequent in some African and Asian regions, but it is unusual in Western countries. HBV has been claimed to add a synergic effect on genesis of this particular mutation with aflatoxin. The aim of this study was to investigate the frequency of 249<sup>Ser </sup>mutation in HCC from patients in Brazil.</p> <p>Methods</p> <p>We studied 74 HCC formalin fixed paraffin blocks samples of patients whom underwent surgical resection in Brazil. 249<sup>Ser </sup>mutation was analyzed by RFLP and DNA sequencing. HBV DNA presence was determined by Real-Time PCR.</p> <p>Results</p> <p>249<sup>Ser </sup>mutation was found in 21/74 (28%) samples while HBV DNA was detected in 13/74 (16%). 249<sup>Ser </sup>mutation was detected in 21/74 samples by RFLP assay, of which 14 were confirmed by 249<sup>Ser </sup>mutant-specific PCR, and 12 by nucleic acid sequencing. All HCC cases with p53-249ser mutation displayed also wild-type p53 sequences. Poorly differentiated HCC was more likely to have 249<sup>Ser </sup>mutation (OR = 2.415, 95% CI = 1.001 – 5.824, p = 0.05). The mean size of 249<sup>Ser </sup>HCC tumor was 9.4 cm versus 5.5 cm on wild type HCC (p = 0.012). HBV DNA detection was not related to 249<sup>Ser </sup>mutation.</p> <p>Conclusion</p> <p>Our results indicate that 249<sup>Ser </sup>mutation is a HCC important factor of carcinogenesis in Brazil and it is associated to large and poorly differentiated tumors.</p

    The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the <it>An. gambiae </it>complex. <it>Anopheles gambiae </it>is one of four DVS within the <it>An. gambiae </it>complex, the others being <it>An. arabiensis </it>and the coastal <it>An. merus </it>and <it>An. melas</it>. There are a further three, highly anthropophilic DVS in Africa, <it>An. funestus</it>, <it>An. moucheti </it>and <it>An. nili</it>. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed.</p> <p>Results</p> <p>A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method.</p> <p>Conclusions</p> <p>The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: <it>Anopheles </it>(<it>Cellia</it>) <it>arabiensis</it>, <it>An. </it>(<it>Cel.</it>) <it>funestus*</it>, <it>An. </it>(<it>Cel.</it>) <it>gambiae</it>, <it>An. </it>(<it>Cel.</it>) <it>melas</it>, <it>An. </it>(<it>Cel.</it>) <it>merus</it>, <it>An. </it>(<it>Cel.</it>) <it>moucheti </it>and <it>An. </it>(<it>Cel.</it>) <it>nili*</it>, and in the European and Middle Eastern Region: <it>An. </it>(<it>Anopheles</it>) <it>atroparvus</it>, <it>An. </it>(<it>Ano.</it>) <it>labranchiae</it>, <it>An. </it>(<it>Ano.</it>) <it>messeae</it>, <it>An. </it>(<it>Ano.</it>) <it>sacharovi</it>, <it>An. </it>(<it>Cel.</it>) <it>sergentii </it>and <it>An. </it>(<it>Cel.</it>) <it>superpictus*</it>. These maps are presented alongside a bionomics summary for each species relevant to its control.</p
    • 

    corecore