6 research outputs found

    Acute treatment of constant darkness increases the efficiency of ATP synthase in rat liver mitochondria

    No full text
    The circadian oscillations of many physiological processes provide an endogenous temporal program for the adaptive synchronization of mammals to the fluctuating external world. The lack of exposure to light causes the circadian system to undergo a process of dark adaptation similar to dark adaptation in the visual system. The aim of the present work was investigate the effect of acute treatment of constant darkness on mitochondrial ATP synthase activities and membrane fluidity in liver from male rat. We found that ATP synthase activity was not changed by the treatment. However ATPase activity and membrane fluidity were significantly diminished and pH gradient driven by ATP hydrolysis was incremented, in comparison from samples from rats kept on normal light/dark cycles. Additionally, the treatment of constant darkness diminishes the passive proton permeability of the inner mitochondrial membrane. In conclusion constant darkness induces a more efficient coupling between proton transport and catalysis, and increment the efficiency of the enzyme because the ratio of ATP synthase/ATPase activity was higher. These results exhibited the physiological adaptation of liver mitochondria to acute treatment of constant darkness in order to satisfy the cellular energy demand

    Acute treatment of constant darkness increases the efficiency of ATP synthase in rat liver mitochondria

    No full text
    The circadian oscillations of many physiological processes provide an endogenous temporal program for the adaptive synchronization of mammals to the fluctuating external world. The lack of exposure to light causes the circadian system to undergo a process of dark adaptation similar to dark adaptation in the visual system. The aim of the present work was investigate the effect of acute treatment of constant darkness on mitochondrial ATP synthase activities and membrane fluidity in liver from male rat. We found that ATP synthase activity was not changed by the treatment. However ATPase activity and membrane fluidity were significantly diminished and pH gradient driven by ATP hydrolysis was incremented, in comparison from samples from rats kept on normal light/dark cycles. Additionally, the treatment of constant darkness diminishes the passive proton permeability of the inner mitochondrial membrane. In conclusion constant darkness induces a more efficient coupling between proton transport and catalysis, and increment the efficiency of the enzyme because the ratio of ATP synthase/ATPase activity was higher. These results exhibited the physiological adaptation of liver mitochondria to acute treatment of constant darkness in order to satisfy the cellular energy demand

    Integrative analysis of the caenorhabditis elegans genome by the modENCODE project

    No full text
    We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome
    corecore