12 research outputs found

    The Impact of the Unstructured Contacts Component in Influenza Pandemic Modeling

    Get PDF
    Individual based models have become a valuable tool for modeling the spatiotemporal dynamics of epidemics, e.g. influenza pandemic, and for evaluating the effectiveness of intervention strategies. While specific contacts among individuals into diverse environments (family, school/workplace) can be modeled in a standard way by employing available socio-demographic data, all the other (unstructured) contacts can be dealt with by adopting very different approaches. This can be achieved for instance by employing distance-based models or by choosing unstructured contacts in the local communities or by employing commuting data.Here we show how diverse choices can lead to different model outputs and thus to a different evaluation of the effectiveness of the containment/mitigation strategies. Sensitivity analysis has been conducted for different values of the first generation index G(0), which is the average number of secondary infections generated by the first infectious individual in a completely susceptible population and by varying the seeding municipality. Among the different considered models, attack rate ranges from 19.1% to 25.7% for G(0) = 1.1, from 47.8% to 50.7% for G(0) = 1.4 and from 62.4% to 67.8% for G(0) = 1.7. Differences of about 15 to 20 days in the peak day have been observed. As regards spatial diffusion, a difference of about 100 days to cover 200 km for different values of G(0) has been observed.To reduce uncertainty in the models it is thus important to employ data, which start being available, on contacts on neglected but important activities (leisure time, sport mall, restaurants, etc.) and time-use data for improving the characterization of the unstructured contacts. Moreover, all the possible effects of different assumptions should be considered for taking public health decisions: not only sensitivity analysis to various model parameters should be performed, but intervention options should be based on the analysis and comparison of different modeling choices

    Age-prioritized use of antivirals during an influenza pandemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The WHO suggested that governments stockpile, as part of preparations for the next influenza pandemic, sufficient influenza antiviral drugs to treat approximately 25% of their populations. Our aim is two-fold: first, since in many countries the antiviral stockpile is well below this level, we search for suboptimal strategies based on treatment provided only to an age-dependent fraction of cases. Second, since in some countries the stockpile exceeds the suggested minimum level, we search for optimal strategies for post-exposure prophylactic treatment of close contacts of cases.</p> <p>Methods</p> <p>We used a stochastic, spatially structured individual-based model, considering explicit transmission in households, schools and workplaces, to simulate the spatiotemporal spread of an influenza pandemic in Italy and to evaluate the efficacy of interventions based on age-prioritized use of antivirals.</p> <p>Results</p> <p>Our results show that the antiviral stockpile required for treatment of cases ranges from 10% to 35% of the population for <it>R</it><sub>0 </sub>in 1.4 – 3. No suboptimal strategies, based on treatment provided to an age-dependent fraction of cases, were found able to remarkably reduce both clinical attack rate and antiviral drugs needs, though they can contribute to largely reduce the excess mortality. Treatment of all cases coupled with prophylaxis provided to younger individuals is the only intervention resulting in a significant reduction of the clinical attack rate and requiring a relatively small stockpile of antivirals.</p> <p>Conclusion</p> <p>Our results strongly suggest that governments stockpile sufficient influenza antiviral drugs to treat approximately 25% of their populations, under the assumption that <it>R</it><sub>0 </sub>is not much larger than 2. In countries where the number of antiviral stockpiled exceeds the suggested minimum level, providing prophylaxis to younger individuals is an option that could be taken into account in preparedness plans. In countries where the number of antivirals stockpiled is well below 25% of the population, priority should be decided based on age-specific case fatality rates. However, late detection of cases (administration of antivirals 48 hours after the clinical onset of symptoms) dramatically affects the efficacy of both treatment and prophylaxis.</p

    Influenza Pandemic Waves under Various Mitigation Strategies with 2009 H1N1 as a Case Study

    Get PDF
    A significant feature of influenza pandemics is multiple waves of morbidity and mortality over a few months or years. The size of these successive waves depends on intervention strategies including antivirals and vaccination, as well as the effects of immunity gained from previous infection. However, the global vaccine manufacturing capacity is limited. Also, antiviral stockpiles are costly and thus, are limited to very few countries. The combined effect of antivirals and vaccination in successive waves of a pandemic has not been quantified. The effect of acquired immunity from vaccination and previous infection has also not been characterized. In times of a pandemic threat countries must consider the effects of a limited vaccine, limited antiviral use and the effects of prior immunity so as to adopt a pandemic strategy that will best aid the population. We developed a mathematical model describing the first and second waves of an influenza pandemic including drug therapy, vaccination and acquired immunity. The first wave model includes the use of antiviral drugs under different treatment profiles. In the second wave model the effects of antivirals, vaccination and immunity gained from the first wave are considered. The models are used to characterize the severity of infection in a population under different drug therapy and vaccination strategies, as well as school closure, so that public health policies regarding future influenza pandemics are better informed

    Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice

    Get PDF
    BACKGROUND: Highly pathogenic avian H5N1 influenza virus is a major public health concern. Given the lack of effective vaccine and recent evidence of antiviral drug resistance in some isolates, alternative strategies for containment of a possible future pandemic are needed. Humanized monoclonal antibodies (mAbs) that neutralize H5N1 virus could be used as prophylaxis and treatment to aid in the containment of such a pandemic. METHODS: Neutralizing mAbs against H5 hemagglutinin were humanized and introduced into C57BL/6 mice (1, 5, or 10 mg/kg bodyweight) one day prior to-, one day post- and three days post-lethal challenge with H5N1 A/Vietnam/1203/04 virus. Efficacy was determined by observation of weight loss as well as survival. RESULTS: Two mAbs neutralizing for antigenically variant H5N1 viruses, A/Vietnam/1203/04 and A/Hong Kong/213/03 were identified and humanized without loss of specificity. Both antibodies exhibited prophylactic efficacy in mice, however, VN04-2-huG1 performed better requiring only 1 mg/kg bodyweight for complete protection. When used to treat infection VN04-2-huG1 was also completely protective, even when introduced three days post infection, although higher dose of antibody was required. CONCLUSION: Prophylaxis and treatment using neutralizing humanized mAbs is efficacious against lethal challenge with A/Vietnam/1203/04, providing proof of principle for the use of passive antibody therapy as a containment option in the event of pandemic influenza

    The potential impact of the next influenza pandemic on a national primary care medical workforce

    Get PDF
    BACKGROUND: Another influenza pandemic is all but inevitable. We estimated its potential impact on the primary care medical workforce in New Zealand, so that planning could mitigate the disruption from the pandemic and similar challenges. METHODS: The model in the "FluAid" software (Centers for Disease Control and Prevention, CDC, Atlanta) was applied to the New Zealand primary care medical workforce (i.e., general practitioners). RESULTS: At its peak (week 4) the pandemic would lead to 1.2% to 2.7% loss of medical work time, using conservative baseline assumptions. Most workdays (88%) would be lost due to illness, followed by hospitalisation (8%), and then premature death (4%). Inputs for a "more severe" scenario included greater health effects and time spent caring for sick relatives. For this scenario, 9% of medical workdays would be lost in the peak week, and 3% over a more compressed six-week period of the first pandemic wave. As with the base case, most (64%) of lost workdays would be due to illness, followed by caring for others (31%), hospitalisation (4%), and then premature death (1%). CONCLUSION: Preparedness planning for future influenza pandemics must consider the impact on this medical workforce and incorporate strategies to minimise this impact, including infection control measures, well-designed protocols, and improved health sector surge capacity

    Multi-agent modeling of the South Korean avian influenza epidemic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several highly pathogenic avian influenza (AI) outbreaks have been reported over the past decade. South Korea recently faced AI outbreaks whose economic impact was estimated to be 6.3 billion dollars, equivalent to nearly 50% of the profit generated by the poultry-related industries in 2008. In addition, AI is threatening to cause a human pandemic of potentially devastating proportions. Several studies show that a stochastic simulation model can be used to plan an efficient containment strategy on an emerging influenza. Efficient control of AI outbreaks based on such simulation studies could be an important strategy in minimizing its adverse economic and public health impacts.</p> <p>Methods</p> <p>We constructed a spatio-temporal multi-agent model of chickens and ducks in poultry farms in South Korea. The spatial domain, comprised of 76 (37.5 km × 37.5 km) unit squares, approximated the size and scale of South Korea. In this spatial domain, we introduced 3,039 poultry flocks (corresponding to 2,231 flocks of chickens and 808 flocks of ducks) whose spatial distribution was proportional to the number of birds in each province. The model parameterizes the properties and dynamic behaviors of birds in poultry farms and quarantine plans and included infection probability, incubation period, interactions among birds, and quarantine region.</p> <p>Results</p> <p>We conducted sensitivity analysis for the different parameters in the model. Our study shows that the quarantine plan with well-chosen values of parameters is critical for minimize loss of poultry flocks in an AI outbreak. Specifically, the aggressive culling plan of infected poultry farms over 18.75 km radius range is unlikely to be effective, resulting in higher fractions of unnecessarily culled poultry flocks and the weak culling plan is also unlikely to be effective, resulting in higher fractions of infected poultry flocks.</p> <p>Conclusions</p> <p>Our results show that a prepared response with targeted quarantine protocols would have a high probability of containing the disease. The containment plan with an aggressive culling plan is not necessarily efficient, causing a higher fraction of unnecessarily culled poultry farms. Instead, it is necessary to balance culling with other important factors involved in AI spreading. Better estimations for the containment of AI spreading with this model offer the potential to reduce the loss of poultry and minimize economic impact on the poultry industry.</p

    Impact of preventive responses to epidemics in rural regions

    Get PDF
    Various epidemics have arisen in rural locations through human-animal interaction, such as the H1N1 outbreak of 2009. Through collaboration with local government officials, we have surveyed a rural county and its communities and collected a dataset characterizing the rural population. From the respondents’ answers, we build a social (face-to-face) contact network. With this network, we explore the potential spread of epidemics through a Susceptible-Latent-Infected-Recovered (SLIR) disease model. We simulate an exact model of a stochastic SLIR Poisson process with disease parameters representing a typical influenza-like illness. We test vaccine distribution strategies under limited resources. We examine global and location-based distribution strategies, as a way to reach critical individuals in the rural setting. We demonstrate that locations can be identified through contact metrics for use in vaccination strategies to control contagious diseases

    Strategies for mitigating an influenza pandemic

    No full text
    Development of strategies for mitigating the severity of a new influenza pandemic is now a top global public health priority. Influenza prevention and containment strategies can be considered under the broad categories of antiviral, vaccine and non-pharmaceutical (case isolation, household quarantine, school or workplace closure, restrictions on travel) measures. Mathematical models are powerful tools for exploring this complex landscape of intervention strategies and quantifying the potential costs and benefits of different options. Here we use a large-scale epidemic simulation to examine intervention options should initial containment of a novel influenza outbreak fail, using Great Britain and the United States as examples. We find that border restrictions and/or internal travel restrictions are unlikely to delay spread by more than 2-3 weeks unless more than 99% effective. School closure during the peak of a pandemic can reduce peak attack rates by up to 40%, but has little impact on overall attack rates, whereas case isolation or household quarantine could have a significant impact, if feasible. Treatment of clinical cases can reduce transmission, but only if antivirals are given within a day of symptoms starting. Given enough drugs for 50% of the population, household-based prophylaxis coupled with reactive school closure could reduce clinical attack rates by 40-50%. More widespread prophylaxis would be even more logistically challenging but might reduce attack rates by over 75%. Vaccine stockpiled in advance of a pandemic could significantly reduce attack rates even if of low efficacy. Estimates of policy effectiveness will change if the characteristics of a future pandemic strain differ substantially from those seen in past pandemics. © 2006 Nature Publishing Group
    corecore