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Abstract

Various epidemics have arisen in rural locations through human-animal interaction, such as the H1N1 outbreak of 2009.
Through collaboration with local government officials, we have surveyed a rural county and its communities and collected a
dataset characterizing the rural population. From the respondents’ answers, we build a social (face-to-face) contact network.
With this network, we explore the potential spread of epidemics through a Susceptible-Latent-Infected-Recovered (SLIR)
disease model. We simulate an exact model of a stochastic SLIR Poisson process with disease parameters representing a
typical influenza-like illness. We test vaccine distribution strategies under limited resources. We examine global and
location-based distribution strategies, as a way to reach critical individuals in the rural setting. We demonstrate that
locations can be identified through contact metrics for use in vaccination strategies to control contagious diseases.
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Introduction

In general, the spread of infectious diseases can be contained by

human response using different approaches. Susceptible people

can acquire immunization through vaccination, or can protect

themselves from the diseases using preventive behaviors, such as

avoiding close physical contacts with infected individuals or using

hygienic habits. Correspondingly, human responses can be

modeled using three classes of models distinguished by changes

taking place in compartments, parameters, or contact levels to take

into account the behavioral changes [1].

A vast literature exists on efficient vaccination strategies, given

the need for efficient strategies to distribute vaccines that can often

be insufficient for the entire population. Some of these strategies

assume that human contact networks are well represented by scale

free networks. One popular strategy aims at immunizing those

individuals having the highest number of contacts, as the most

critical actors for spreading the infection [2]. However, local

strategies are more efficient and implementable and often require

a lower fraction of the population to be vaccinated than random

global immunization to contain epidemics. The strategy of

acquaintance immunization proposes the immunization of ran-

dom acquaintances of random individuals [3]. Another local

strategy proposes to vaccinate highly connected acquaintances of

randomly selected people; based on the properties of scale free

networks, with this approach the probability of targeting the highly

connected individuals in the contact network increases with

respect to the simple random selection [4]. In the case of a limited

amount of available vaccines, the authors of [5] use stochastic

simulations of epidemic and numerical optimization methods to

find near-optimal vaccine distributions to minimize the epidemic

size. Again in the case of a limited amount of available vaccines,

the best strategy suggests to vaccinate schoolchildren, the

population group with highest contact in different communities,

and the high-risk groups, the population groups that need

protection [6]. Since a strong community structure can be

detected in social contact networks, the approach in [7] aims at

immunizing individuals bridging communities rather than simply

targeting highly connected individuals. An extensive set of

simulations performed in [8] suggests two strategies based on

age classes: In the first strategy vaccinating older children,

adolescents, and young adults minimizes the number of infections,

while in the second strategy vaccinating either younger children

and older adults or young adults minimizes the number of deaths.

Using game theory, the authors of [9] show that when vaccination

is an individual’s choice, a periodic behavior can be seen in

simulations. A severe epidemic in one year incentivizes high

vaccination rates in the following year, causing a milder epidemic

for which individuals have less motivation for vaccination in the

subsequent year. In [10], authors develop a vaccination strategy

based on optimizing the susceptible size by a partitioning of the

contact network through vaccination. Based on the authors’

simulations, this strategy is more efficient than those based on

vaccinating the highest betweenness or contact individuals. Using

a decision-making framework for vaccine distribution policies

based on a geographical and demographical data in USA, the

authors of [11] find that distributing vaccines first to counties

where the latest epidemic waves are expected is the most efficient

policy.

In any case, assessing the effectiveness of mitigation strategies

and behavioral responses both from a public health point of view
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and from individuals’ perspectives is a complex and not fully-

explored problem. In particular, a thorough evaluation and

comparison of feasible mitigation strategies in the specific setting of

rural regions is missing. In other words, not only the amount of

success a given strategy can provide is not determined, but also its

related cost in economical and social terms is unknown.

In this paper, we carry out extensive simulations on a weighted

contact network determined by collected data in the City of

Chanute and Neosho County in the State of Kansas. In particular

we study the impact of limited resource vaccination campaigns,

using an exact model of a stochastic SLIR Poisson process.

Simulations are run across several scenarios and with stochastic

sets of the SLIR model parameters. The evaluation of the

vaccination campaigns is performed computing the average

number of cases prevented per a single vaccine and the sizes

and durations of the outbreaks. Our contributions are twofold: we

construct and analyze a data-based rural contact network and we

provide a thorough analysis and comparison of mitigation

strategies in a rural region. We hope that our results can provide

practical guidelines for health officials to contain and suppress

epidemics in rural regions.

Methods

In the following we describe the data collection and analysis,

and the models for the network, for the epidemic spreading, and

also for vaccination strategies and distributions.

1. Data Collection and Analysis
As of the 2010 U.S. Census, Neosho County was a rural county

with 16,512 residents in 571.5 square miles in southeastern

Kansas. Most of the population was White (94.1%); a majority

were female (50.6%) and many (17.4%) were 65 years of age or

older. The median household income was $36,702 with 17.0%

living below the poverty level. Between July and October 2010, the

towns of Chanute, Thayer, and Galesburg were selected to

participate in a survey concerning factors that would predict the

spread of epidemics in rural areas. From county public household

rosters, households were randomly selected from Chanute (10%,

N = 171), Thayer (50%, N = 158), and Galesburg (50%, N = 73)

for a total initial N = 402. After considerations mentioned in the

supplementary information, the final number of available and

eligible households were 143, 65, and 162 in Thayer, Galesburg,

and Chanute, respectively, with total N = 370.

The tailored design method was used, with minor modifications,

to improve response rates [12–15] with a focus on personalization

and multiple follow-up mailings. The initial survey also included a

local news report announcing the impending start of the survey

[16]. Overall, 242 surveys were for an overall response rate of

65.4%. The response rate for Chanute was 74.7% (121/162). The

response rate for Thayer and Galesburg combined was 55.8%

(116/208). The difference in response rates (74.7% vs. 55.8%)

between Chanute and Thayer/Galesburg was significant statisti-

cally, two-sided Fisher’s Exact Test (p,.001), odds ratio = 2.34

(95% CI, 1.50–3.66, p,.001). The difference in response rate for

the more urban location was probably related to the content of the

survey, which focused on respondents’ visiting locations of stores,

public sites, and restaurants in Chanute itself. Thus, the survey

probably seemed more relevant to Chanute residents, even though

we were interested in how often households from outlying towns

went to the nearest urban center to visit or shop.

A majority (56%) of the respondents reported being from

Chanute compared to 23% from Thayer and 10% from Galesburg

(the remaining percentage did not specify exactly where they were

from). Of the 357 participants, the largest number were ages 45 to

64 (47.1%), with 26.1% 65 years of age or older and 18.8% (26–

44) and 8.1% (18 to 25) younger than 45. A majority of the

participants were females (57.6%). Most of the respondents

(75.4%) had lived in their local community for 15 years or more.

The vast majority (97.5%) of the respondents lived in a single

family home. Very few (6.2%) of the households included a

homebound member. Most of the respondents had either the

equivalent of a high school degree (22%) or a college (23%) or

graduate (12%) degree. Nearly sixty percent had incomes between

$25,000 and 100,000 a year with 11% earning more and 30%

earning less. Some respondents had type I (1.2%) or type II

diabetes (10.4%) or were pre-diabetic (3.2%). Most respondents

considered themselves to be slightly (35.7%), somewhat (18.2%), or

extremely (8.6%) overweight. Most (56.6%) reported that they ate

out one or two times a week with 26% eating out more often and

17% not at all.

In terms of compliance risk, nearly 49% of respondents said

they would still visit at least one or two households outside of their

home if there was a serious epidemic and radio/TV/internet had

told them to remain at home and not visit with others. Figure 1

presents the distribution of the number of individuals that a

respondent expects to still visit against advice. Only half (50.0%) of

the respondents had been vaccinated against the flu within the past

six months. Nearly 40 percent (38.9%) did not obtain such a

vaccination because of concerns about the vaccine’s safety or

effectiveness. Only about 7% believed they had come down with

the flu within the past six months while about 18% thought they

might have come down with a cold. About 18% of the respondents

reported taking vitamin D supplements; only 6% reported taking

zinc supplements. Approximately 80% of the respondents had

extensive contact with domestic pets on a daily basis while about

19% of respondents had contact with farm animals or wild animals

regularly, shown in figure 2. Contact risk (low, moderate, high)

was significantly related statistically with compliance risk (none,

low, high) (p,.001, ES = 0.50, medium effect size). As contact risk

increased from low to high, high compliance risk increased from

4.4% to 21.8%; as contact risk decreased from high to low, the

percentage of respondents with no compliance risk increased from

38.6% to 62.3%.

Figure 1. Distribution of discouraged household visits. The
distribution of the number of households that a respondent expects to
still visit in a week against advice during a serious epidemic is shown.
doi:10.1371/journal.pone.0059028.g001
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2. Models
Here, the procedure to construct the contact network from

survey data is explained. Furthermore, the compartmental model

used for simulations and the preemptive vaccination strategies are

described.

From the survey responses, we constructed a rural contact

network as an estimation of the social contact structure among the

survey respondents. The network is based on two central

questions: the number of contacts that a person has, and the

locations that a person visits at different times in a typical day. The

basis for the interactions between a pair of respondents is the

locations that they both visited in common. We considered 4 types

of location-based interactions: both visit the same location in the

morning, both visit the same location in the afternoon, both visit

the same location in the evening, and both visit the same location

regardless of time. The fourth category introduces some overlap-

ping in the interactions, but it is added to account for some of the

uncertainty in potential pathways of the disease spread. We

considered 66 locations in the network construction and therefore

264 = 6664 possible interactions between each pair of survey

respondents. We compute normalized weights from each respon-

dent i to each other respondent j given by lij, representing the

number of location-based interactions between respondents i and j.

For the few respondents who did not complete the section of the

survey regarding location visits, we assign them uniform weights of

interacting with every other respondent in the network. Letting

nodes represent the set of N = 353 respondents and weighted links

represent the contact between them; we have a symmetric contact

network at this point. Next we uniformly scale the weights on the

links directed outward from each respondent i such that the sum of

these weights is equal to the number of contacts that respondent i

has indicated having with his or her response (wij = ai*lij for every j

in 1, 2, … N). (This scaling makes irrelevant the absolute value of

the uniform weight of the respondents who lack location data.)

The bipartite network of locations and survey respondents is

finally represented as a weighted, directed (asymmetrical), and

unipartite contact network of 353 nodes, with each pair of nodes (i

and j) connected by two links which are respectively characterized

by the weights wij and wji.

Six of the vaccination strategies will center on three node

metrics: incoming node strength (the sum of the weights incoming

to a node), outgoing node strength (the sum of the weights

outgoing from a node), and node betweenness (a count of the

shortest paths among all pairs that utilize the node) [17,18]. The

incoming node strength of a node is a topology metric that

captures the direct impact of the network on the node. The

outgoing node strength captures the direct impact that a node can

have on the network. The betweenness of a node is a measure

which captures the significance of a node in traversing the

network. A node with a higher betweenness would be more likely

to be traversed (in a shortest-path-type travel across the network

between any pair of nodes) than a node with lower betweenness.

Although an epidemic is not restricted to following the shortest

paths across a network, the betweenness metric still plays an

important role in identifying nodes which are likely to catch the

disease if it reaches a majority of the nodes in the network. The

rural contact network is depicted in figure 3, where the nodes

representing individuals are shown in purple in a cloud and they

are connected to the locations that they frequent, shown as orange

nodes on the map [19].

On this weighted network, we model an epidemic outbreak

using a Susceptible-Latent-Infected-Recovered compartmental

model (SLIR) [17,20]. In the SLIR model, we assume infections

arrive at a susceptible (S) node j from an infected (I) node i with a

rate that is a product of the directed contact wij and the basic

infection rate b. When an infection arrives to a susceptible node,

the node takes on a latent infection (transfers from the susceptible

compartment to the latent compartment). A node, once latent (L),

is considered unable to spread the disease, but is developing to that

stage with rate l. The inverse of the rate l is the expected time for

a node to spend in the latent state. The next stage of the disease,

the infected/infectious state, enables the node to spread infections

to each of its neighbors at rates proportional to the weights on its

outgoing links. Each infected node recovers from the infected state

at a rate m. Once a node is in the recovered state (R), it remains

recovered and does not participate in the disease process any

further.

We simulate this model exactly using an event-driven simulation

of the SLIR process on the weighted rural contact network. We

initialize the simulation by assigning a disease state to each node

and then drawing exponential waiting times for the next event at

each node. Taking the event with the minimum time across all

nodes, we advance the event node to its next disease state and re-

draw waiting times for all nodes. This step is repeated until all

waiting times are infinite, which happens when the disease process

is complete. At this point, all nodes will be either susceptible or

recovered. In the event-driven simulation, the time periods

between successive events will not be regular, but instead they

are non-integer stochastic values.

Vaccination is carried out by selecting a set of nodes and

immunizing them with a certain vaccine efficacy rate. We consider

seven different strategies for selecting the set of nodes for

vaccination. The first and simplest strategy is a random selection

of 10% of the population (35 nodes). The random method

represents a blind distribution across the population. The next

three strategies consider a targeted selection of nodes (individuals)

based respectively on the three node metrics, incoming node

strength, outgoing node strength, and node betweenness. These

three strategies are idealistically implemented by selecting the 35

nodes with the highest values for the respective metric and

administering the vaccine. For less ideal situations, we consider

three additional strategies that attempt to represent feasible

vaccine distribution strategies for rural populations. Considering

again the three above mentioned network metrics, we determine

the location which has the highest average value (on the set of

nodes that visit the location) of each metric. These locations are a

restaurant (outgoing node strength), a pharmacy (node between-

Figure 2. Distribution of human-animal interactions. The
distribution of types of animals a respondent interacts with in a typical
day is shown. Note that the total does not sum to one as respondents
can interact with multiple types of animals.
doi:10.1371/journal.pone.0059028.g002
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ness), and a location used for public events (incoming node

strength). After selecting the locations that represent on average

the best places to find nodes with higher values of each metric, we

consider a random selection within a location of 10% of the entire

population for vaccination. This location-based targeting has been

proposed in [20]. It allows an indirect (and thus more feasible)

targeting of critical populations that ensures a more effective use of

resources than widely distributing resources in a global manner.

Note that there is an implicit assumption that the entire population

is susceptible previous to the distribution of the vaccine. Although

this is not a realistic assumption for a commonly occurring strain

of influenza, it would likely be the case for any new disease threat.

In figure 4, a simple exemplification of these strategies is described.

Results

We measured on the network the metrics of interest for the

vaccination targeting strategies. Figure 5 shows the diversity found

in the weights that measure the levels of contact between each

neighboring pair of nodes. Roughly 30 percent of the links carry

very small weights, and there are very few links representing the

highest weighted contacts. In figure 6 we display two views of the

network topology to visualize the estimated rural community

contact structure. Since the network is rather dense, we remove

the links with lower weights in two different patterns. On the left

side of figure 6, we colored the nodes and the links having weights

between 0.2 and 1.0, where the weights of the green links are

between 0.2 and 0.3 and those of the purple links are between 0.3

and 1.0. In this depiction, a minority but significant set of

individuals (roughly 50 nodes) can been noticed for their state of

isolation. These nodes are not strongly connected to the core of the

network, but are connected when the links with the lowest weights

are considered. This loosely connected ‘‘fringe’’ of the rural

community is rarely reached by epidemics until a very strong

epidemic comes. On the right side of figure 6, we colored the

nodes and the links having weights between 0.4 and 1.0 as well as

what we call the ‘‘best-friends’’ links. For each node, we select the

link having the highest out-going weight and define this link as the

‘‘best-friend’’ link of the node. This depiction of the network

captures the most likely paths (it is composed of the highest

weighted links) that an epidemic might take from anywhere in the

network towards the center of the network. Although this pattern

of visualization may give the false impression that the network is

tree-like or scale-free, an epidemic would leave a tree-like pattern

as it traces its way through the rural community. Note that figure 5

proves that both of these network visualizations in figure 6 are

missing majorities of the links in the complete network.

Figure 7 shows the distribution of the node betweenness metric

for the network. More than 80 percent of the nodes have very

small values of node betweenness, leaving a select group of nodes

that are critical connections in the system of shortest paths through

the community.

Figure 8 depicts the distribution of the node in-strength metric

for the network. It is much less heterogeneous than the node

betweenness and link weight distributions as the in-strengths are

found rather homogeneous across the nodes. We explored the

Figure 3. Survey-based rural contact network of Neosho County. A depiction of the rural contact network developed from a survey of
Neosho County is shown, where the individuals are represented by purple nodes in a ‘‘cloud,’’ which is connected by the respondents local travel
habits to the set of rural locations shown in orange on the map.
doi:10.1371/journal.pone.0059028.g003

Figure 4. Example of vaccination strategies for individuals (purple nodes) in a contact network. Orange nodes represent locations, red
circles represent the selected nodes for vaccination, and the green nodes represent random selected individuals, whose friends will be candidate for
vaccination.
doi:10.1371/journal.pone.0059028.g004
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correlations between the network metrics and various survey

responses and found that node betweenness was significantly

correlated with age (r = 2.15, p,.01), travel time to work (r = .20,

p,.001), distance to work (r = .19, p,.001), level of education

(r = .12, p,.05), number of non-family friends contacted weekly

(r = .51, p,.05), and hours away from home each day (r = .22,

p,.001). The outgoing node strength was significantly correlated

with age (r = 2.20, p,.001), visiting with more family members

outside one’s residence (r = .18, p,.01), household size (r = .12,

p,.05), travel time to work (r = .44, p,.001), distance to work

(r = .45, p,.001), compliance risk (r = .13, p,.05), level of

education (r = .23, p,.001), income (r = .17, p,.01), having

Figure 5. Distribution of the weights representing social contact for the rural community contact network. Note that the vertical axis
has a log scale.
doi:10.1371/journal.pone.0059028.g005

Figure 6. Two visualizations of the rural contact structure within the network. (Left) A visualization of the rural community contact network
showing the nodes and the links having weights between 0.2 and 1.0, where the weights of the green links are between 0.2 and 0.3 and those of the
purple links are between 0.3 and 1.0. (Right) A visualization of the rural community contact network showing the nodes and the links having weights
between 0.4 and 1.0 as well as the ‘‘best-friends’’ links, where the best friend link of a node is defined as the link having the highest out-going weight.
doi:10.1371/journal.pone.0059028.g006
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diabetes ( r = 2.12, p,.05), how often one eats out (r = .16, p,.01),

and hours away from home each day (r = .50, p,.001). Node in-

strength was correlated with level of education (r = .12, p,.05) and

having had the flu in the past six months (r = 2.12, p,.05).

In general, while many of these relationships are not especially

strong in terms of effect sizes, it appears that residents with higher

levels of education, who have longer commutes, who are younger,

with more income, those without diabetes or recent flu-like

illnesses, who are away from home more hours each day, and who

eat out more often are more likely to be important agents in the

network measures that influence the potential spread of epidemics.

It is interesting to observe that the younger rural residents are

Figure 7. Distribution of the node betweenness values of the individuals in the rural community contact network. Note that the
vertical axis has a log scale.
doi:10.1371/journal.pone.0059028.g007

Figure 8. Distribution of the node in-strength values of the individuals in the rural community contact network. Note that the vertical
axis has a log scale.
doi:10.1371/journal.pone.0059028.g008
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likely the most important agents when considering that rural

regions are typically characterized by aging populations. This

importance appears to be due to them, the younger persons,

spending more time away from home, driving longer to work,

visiting more businesses, and in all this, having and visiting more

persons outside of their homes. Perhaps, the traditional farmer

who rarely visits town and is mostly self-sufficient within his home

and immediate neighbors is giving way to a younger generation

and changing economy where increased travel and social

interaction are increasingly required.

We performed extensive simulations to investigate potential

epidemics and the proposed vaccination strategies for the rural

contact network representing a sample population from Neosho

County. To mimic a realistic epidemic with the stochastic SLIR

model, we utilize average values of l21 = 0.764 days, m21 = 1.736

days, and R0 = b/m = 1.75 with respective standard deviations of

0.100 days, 0.100 days, and 0.065 [21–27]. We explore the

hypothetical outbreaks first by simulating 1,000,000 trials of the

considered situation (such as without mitigation or with a specific

mitigation strategy). For each trial, a triple of (l, m, R0) is drawn

from the three Gaussian distributions with the respective

parameters and the outbreak is simulated until it dies out, leaving

only susceptible and recovered individuals behind. This first type

of experiment attempts to capture the diversity of possible

influenza-like outbreaks in the rural community and we use the

results of these for numerical comparisons between the different

mitigation strategies. However, the irregularity of the parameter

values does not yield insightful figures. The second type of

experiment we ran was the simulation of sets of 10,000 trials that

scan over values R0 to quantify the range of potential outbreaks. In

this second type of experiment, we deterministically vary R0, while

l and m are still drawn from their distributions [28,29].

For each simulation, we track the numbers of nodes in each

disease state through time as well as the timings of all event

occurrences. We capture the total cases, representing this as the

attack rate or the fraction of the total population infected, and the

duration of each outbreak in days. The duration of an outbreak is

the (continuous) time in days from the beginning of the simulation

to the recovery (I to R transition) of the last infected node at which

point all nodes in the network will either be susceptible or

recovered. We define an outbreak as any trial that resulted in at

least one secondary infection and present statistics only over the

trials successfully demonstrating outbreaks. We simplify the

presentation of the results of the second type of experiment by

computing and plotting the average and 95% range of the

resulting total cases for each group of 10,000 simulations on a

single R0 [21–23,25–27]. Figure 9 summarizes the distributions of

the total cases as a fraction of the population infected (attack rate)

in the manner described above. As R0 increases, the epidemic size

increases in a near-linear manner. It can be seen that distributions

are broad but have low average values. This figure suggests that

around 5 percent of the population might on average fall sick

during an influenza season, but a few large outbreaks might touch

30–40 percent of the community. It is interesting to observe in

figure 9 that the average attack rate varies little over the explored

range and the median attack rate varies even less. The regularity of

the outbreak distributions for different epidemic strengths is likely

due to the strongly connected core of the network and the weakly

connected fringes.

We ran seven sets of simulations to consider the seven

vaccination strategies described in Section 3 and for each set we

ran both types of experiments as described previously. In each

trial, we draw a value for vaccine efficacy from a Gaussian

distribution with mean of 72.0% and standard deviation of 6.0%

to approximate realistic efficacy values [30–32]. The first

vaccination strategy, the random distribution over the entire

population, is the selection of a group of individuals representing

10 percent of the population and administering vaccines prior to

the start of an outbreak with the given efficacy. Figure 10

demonstrates the potential reduction in the distributions of

outbreaks by random vaccination.

The three idealistic vaccination strategies select their targets and

vaccinate them by rankings determined by the node metrics. The

left side of figure 11 captures the reduced epidemic sizes under an

individual targeting strategy which uses node betweenness to select

the individuals. For a realistic targeting of a distribution location,

the right side of figure 11 captures the potential reductions in the

epidemic sizes under the node-betweenness-based location target-

ing strategy. The location-based strategies are intuitively less

successful than the individual targeting methods, but they

represent much more feasible options for an administrative

intervention.

A brief comparison of the results shown in figures 9, 10, 11 can

be seen in figure 12. Figure 12 plots the average attack rates of the

three strategies and the case of no vaccination. It can be seen that

the situation of no vaccination results in the highest average attack

rates, while the individually targeting strategy results in the lowest

average attack rates and the remaining two strategies appear

similar in an intermediate level of effectiveness. The distributions

of the epidemic durations are not shown as they did not vary as R0

varies. We summarize the comparison of the different vaccination

strategies under the first type of experiments in table 1, which

describes the distributions of attack rates and epidemic durations

in days (in italics) by their averages, medians and 95% confidence

intervals. It is immediately interesting to notice that each of the

vaccination strategies reduces the average epidemic duration,

some by as much as 20 percent on the average value. In table 1, it

can be seen that the individual targeting methods have the highest

average results, but among the feasible methods, the location-

based targeting using the node betweenness metric is the most

successful at reducing the total cases on average. The node

betweenness also provides the best metric for the individual

targeting strategies.

The last column of table 2 displays the cases prevented per

vaccine distributed. The value cases prevented per vaccine has an

intuitive benchmark of the average vaccine efficacy at 0.72. If a

vaccination strategy is very efficient at stopping an outbreak, then

we can expect the average number of cases prevented per vaccine

to be higher than the typical efficacy of the vaccine. On the other

hand, if a vaccinated trial is resulting in an average number of

cases prevented per vaccine that is less than the typical vaccine

efficacy, it doesn’t necessitate that the vaccination strategy will

perform poorly in all situations. In general this situation implies

that the vaccines are being given to individuals who usually aren’t

being infected and therefore they made little use of the vaccine in

that set of trials. This could arise from either a poor vaccine

distribution strategy or from a distribution of vaccines that is larger

in size than a typical outbreak. When we have a strong outbreak,

the vaccines are almost surely going to be a necessary measure,

whereas in a weaker outbreak, most of the population will not be

infected and extra vaccines will be ‘‘unused’’ with respect to

preventing new cases. Notice that for the first type of experiment

when we are not considering any vaccination the epidemic impacts

roughly 5.1 percent of the population while the number of

vaccines distributed is sufficient for 10 percent of the population.

Table 2 lists the probabilities of outbreaks occurring under each

of the eight scenarios considered. Of particular interest is that the

targeted in-strength approach, having the lowest probability of an

Preventive Responses to Epidemics in Rural Regions

PLOS ONE | www.plosone.org 7 March 2013 | Volume 8 | Issue 3 | e59028



Figure 9. Distributions of attack rates under no mitigation. The distributions of the total cases as a fraction of the considered population over
the estimated range of R0 are represented by the medians (dashed blue line), averages (blue line), and 95% confidence interval (grey shaded region).
As the infection rate increases, the epidemic size increases in a near-linear manner.
doi:10.1371/journal.pone.0059028.g009

Figure 10. Distributions of attack rates under a random vaccination of 10 percent of the population. The distributions of the total cases
as a fraction of the considered population over the estimated range of R0 are represented by the medians (dashed blue line), averages (blue line), and
95% confidence interval (grey shaded region).
doi:10.1371/journal.pone.0059028.g010
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outbreak, has a higher average attack rate and longer average

epidemic duration than the other targeted strategies.

Discussion

From the network analysis, we observed that the rural contact

structure displays a significant amount of heterogeneity in the

considered metrics. This heterogeneity suggests that the small

number of nodes having the highest values of each metric might

present strategic sub-populations for mitigation objectives. The

rural contact network also contained a relatively disease-resistant

sub-population due to their poor level of connectivity and location

on the ‘‘fringes’’ of the rural community network. From statistical

correlations, it appears that residents with higher levels of

education, who have longer commutes, who are younger, with

more income, those without diabetes or recent flu-like illnesses,

Figure 11. Distributions of attack rates under two mitigation strategies. (Left) Under a node-betweenness-based individual targeted
vaccination of 10 percent of the population, the distributions of the attack rate over the estimated range of R0 are represented by the medians
(dashed blue line), averages (blue line), and 95% confidence interval (grey shaded region). (Right) Under a node-betweenness-based location targeted
vaccination of 10% of the population, the distributions of the attack rate over the estimated range of R0 are plotted in the same manner.
doi:10.1371/journal.pone.0059028.g011

Figure 12. Comparison of average attack rates for different mitigation strategies. The comparison of no mitigation (No Vacc, blue line), a
random vaccination of 10 percent of the population (Random, green line), node-betweenness-based individual targeted vaccination (T-Betw, red
line), and a node-betweenness-based location targeted vaccination (L-Betw, teal line) is represented by their respective average attack rates over the
estimated range of R0.
doi:10.1371/journal.pone.0059028.g012
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who are away from home more hours each day, and who eat out

more often are more likely to be important players in the

according to the network metrics that influence the potential

spread of infectious diseases.

In the data collected from the rural survey, there remain

significant limitations. Although the survey presents a variety of

types of locations such as schools, restaurants, libraries, and public

attractions, the data does not sufficiently capture the information

regarding household interactions. It was not feasible to anony-

mously identify individual households and which survey respon-

dents visited them with the resources at our disposal. The lack of

information regarding young respondents and household interac-

tions remains a strong limitation in the characterization of this

community and the following epidemic study on the rural contact

network.

For vaccine distribution we considered seven strategies, but only

four are reasonably feasible for local administrators to implement,

those being the random distribution across the population and the

three location-based distributions. The traditional targeted groups

for distribution such as the health-care personnel, the very young

(6–59 months), the elderly (50 years or older), pregnant women,

those with chronic health issues, and American Indians are not

completely identifiable from our survey results [33]. We could

identify respondents by age range, but occupation and maternity

status are transitory positions and were not explored by the survey.

The global random distribution of vaccines gives a simplest

method to compare the other vaccination methods to. The

location-based methods are indicative for anonymously targeting

subpopulations, not only for vaccination campaigns, but also for

educational outreach to encourage social responses such as

adoption of preventative health practices.

Interestingly, using the network metrics to select locations does

not necessarily produce intuitive results. The restaurant chosen to

represent locations that are frequented by nodes with high node

outgoing node strength (as it had the highest average value) had

less than one-third of the survey respondents frequenting it than

some of the more popular restaurants in the region. Although

diseases are partially mitigated, there is a limit to the reduction

that can be observed in the total cases for the strongest diseases

due to the resource limitation. Therefore when considering

limited-resource vaccine distribution, local administrators should

probably follow the traditional priority schedule. However, the

identification of the critical locations would be useful for

preventative education efforts, real-time epidemic alerts, and

emergency resource distribution.

The results of this analysis are intended to help guide responses

to a rural epidemic threat. With this, responders can explore the

theoretical impacts that might be had from a limited-resource

vaccine distribution by exploring various locations for distribution.

Social behavior and human interaction (contact) are not exact

sciences, so the theoretical mitigation results should be considered

possibilities and aspirations rather than deterministic outcomes for

any rural county or town.

Conclusions

Starting with a survey of a rural community, demographics

were analyzed and an estimation of the social contact structure

was built. This network was measured and the metrics were

correlated with various demographics from the survey. Through

the use of an exact model of a stochastic SLIR Poisson process, we

Table 1. The attack rates of different strategies and the
duration of the epidemic outbreaks in days (in italics) shown
by the averages, medians, and confidence intervals of the
distributions.

Average Median 95% CI

No Vaccination 0.0512 0.0142 (0.0057, 0.3088)

10.7200 7.3066 (1.6101, 35.6527)

Random Vaccination 0.0407 0.0113 (0.0057, 0.2493)

9.9031 7.0369 (1.6190, 32.4859)

Targeted Betweenness 0.0251 0.0113 (0.0057, 0.1388)

8.3638 6.5215 (1.5960, 25.2766)

Targeted In-strength 0.0324 0.0113 (0.0057, 0.1955)

9.1509 6.7562 (1.6046, 29.4892)

Targeted Out-strength 0.0261 0.0113 (0.0057, 0.1445)

8.4930 6.5795 (1.6046, 25.8235)

Location Targeted Betweenness 0.0433 0.0113 (0.0057, 0.2635)

10.1597 7.1323 (1.6073, 33.5715)

Location Targeted In-strength 0.0433 0.0113 (0.0057, 0.2635)

10.1652 7.1454 (1.6231, 33.4379)

Location Targeted Out-strength 0.0434 0.0113 (0.0057, 0.2635)

10.1558 7.1178 (1.6153, 33.5992)

doi:10.1371/journal.pone.0059028.t001

Table 2. The probabilities of an outbreak occurring under the eight different scenarios considered and the cases prevented per
vaccine distributed.

Probability of outbreak Cases Prevented Per Vaccine

No Vaccination 0.3928 —

Random Vaccination 0.3783 0.1065

Targeted Betweenness 0.3742 0.2638

Targeted In-strength 0.3623 0.1898

Targeted Out-strength 0.3768 0.2537

Location Targeted Betweenness 0.3778 0.0797

Location Targeted In-strength 0.3783 0.0795

Location Targeted Out-strength 0.3776 0.0790

An outbreak is defined as the occurrence of at least one secondary infection from the initial infected node.
doi:10.1371/journal.pone.0059028.t002
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have characterized a typical influenza-like outbreak in the

community and investigated vaccination strategies. When consid-

ering resource-limited vaccine distribution strategies, we identified

critical locations for ethical targeting subpopulations with the goal

of effective disease prevention. Our aspiration is that this analysis

will be a valuable resource for both the rural community on which

this study focused, and also for several similar communities in the

region.
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17. Barrat A, Barthélemy M, Vespignani A (2008) Dynamical Processes on Complex

Networks. 1st ed. Cambridge University Press.

18. Newman M (2010) Networks: An Introduction. 1st ed. USA: Oxford University
Press.

19. Google (2012) Neosho County, KS - Google Maps [Internet]. [cited 2012 Jun].
Available from: http://maps.google.com/maps?hl = en&tab = wl

20. Scoglio C, Schumm W, Schumm P, Easton T, Roy Chowdhury S, et al. (2010)

Efficient Mitigation Strategies for Epidemics in Rural Regions. PLoS ONE.

5(7):e11569.
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