8 research outputs found

    Impact of cell cycle on repair of ruptured nuclear envelope and sensitivity to nuclear envelope stress in glioblastoma

    No full text
    Abstract The nuclear envelope (NE) is often challenged by various stresses (known as “NE stress”), leading to its dysfunction. Accumulating evidence has proven the pathological relevance of NE stress in numerous diseases ranging from cancer to neurodegenerative diseases. Although several proteins involved in the reassembly of the NE after mitosis have been identified as the NE repair factors, the regulatory mechanisms modulating the efficiency of NE repair remain unclear. Here, we showed that response to NE stress varied among different types of cancer cell lines. U251MG derived from glioblastoma exhibited severe nuclear deformation and massive DNA damage at the deformed nuclear region upon mechanical NE stress. In contrast, another cell line derived from glioblastoma, U87MG, only presented mild nuclear deformation without DNA damage. Time-lapse imaging demonstrated that repairing of ruptured NE often failed in U251MG, but not in U87MG. These differences were unlikely to have been due to weakened NE in U251MG because the expression levels of lamin A/C, determinants of the physical property of the NE, were comparable and loss of compartmentalization across the NE was observed just after laser ablation of the NE in both cell lines. U251MG proliferated more rapidly than U87MG concomitant with reduced expression of p21, a major inhibitor of cyclin-dependent kinases, suggesting a correlation between NE stress response and cell cycle progression. Indeed, visualization of cell cycle stages using fluorescent ubiquitination-based cell cycle indicator reporters revealed greater resistance of U251MG to NE stress at G1 phase than at S and G2 phases. Furthermore, attenuation of cell cycle progression by inducing p21 in U251MG counteracted the nuclear deformation and DNA damage upon NE stress. These findings imply that dysregulation of cell cycle progression in cancer cells causes loss of the NE integrity and its consequences such as DNA damage and cell death upon mechanical NE stress

    Search for Conditions to Detect Epigenetic Marks and Nuclear Proteins in Immunostaining of the Testis and Cartilage

    No full text
    The localization of nuclear proteins and modified histone tails changes during cell differentiation at the tissue as well as at the cellular level. Immunostaining in paraffin sections is the most powerful approach available to evaluate protein localization. Since nuclear proteins are sensitive to fixation, immunohistochemical conditions should be optimized in light of the particular antibodies and tissues employed. In this study, we searched for optimal conditions to detect histone modification at histone H3 lysine 9 (H3K9) and H3K9 methyltransferase G9a in the testis and cartilage in paraffin sections. In the testis, antigen retrieval (AR) was indispensable for detecting H3K9me1 and me3, G9a, and nuclear protein proliferating cell nuclear antigen (PCNA). With AR, shorter fixation times yielded better results for the detection of G9a and PCNA. Without AR, H3K9me2 and H3K9ac could be detected at shorter fixation times in primary spermatocytes of the testis. In contrast to the testis, all antibodies tested could detect their epitopes irrespective of AR application in the growth plate cartilage. Thus, conditions for the detection of epigenetic marks and nuclear proteins should be optimized in consideration of fixation time and AR application in different tissues and antibodies

    ヘイセイ 27ネンド キンダイカ サンギョウ イサン アイギ トンネルグン ドウブツ チョウサ ホウコクカイ

    No full text
    本講演記録は,文部科学省「地(知)の拠点整備事業」平成27年度地域振興教育研究経費を受けて実施された平成27年度近代化産業遺産「愛岐トンネル群」動物調査報告会を記録したもの
    corecore