24 research outputs found

    Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs

    Get PDF
    The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples

    Epitope Mapping of HIV-Specific CD8+ T cells in a Cohort Dominated by Clade A1 Infection

    Get PDF
    CD8+ T cell responses are often detected at large magnitudes in HIV-infected subjects, and eliciting these responses is the central aim of many HIV-1 vaccine strategies. Population differences in CD8+ T cell epitope specificity will need to be understood if vaccines are to be effective in multiple geographic regions.In a large Kenyan cohort, we compared responsive CD8+ T cell HIV-1 Env overlapping peptides (OLPs) to Best Defined Epitopes (BDEs), many of which have been defined in clade B infection. While the majority of BDEs (69%) were recognized in this population, nearly half of responsive OLPs (47%) did not contain described epitopes. Recognition frequencies of BDEs were inversely correlated to epitopic sequence differences between clade A1 and BDE (P = 0.019), and positively selected residues were more frequent in "new" OLPs (without BDEs). We assessed the impact of HLA and TAP binding on epitope recognition frequencies, focusing on predicted and actual epitopes in the HLA B7 supertype.Although many previously described CD8 epitopes were recognized, several novel CD8 epitopes were defined in this population, implying that epitope mapping efforts have not been completely exhausted. Expansion of these studies will be critical to understand population differences in CD8 epitope recognition

    Molecular Evolution of Human Immunodeficiency Virus Type 1 upon Transmission between Human Leukocyte Antigen Disparate Donor-Recipient Pairs

    Get PDF
    BACKGROUND: To address evolution of HIV-1 after transmission, we studied sequence dynamics in and outside predicted epitopes of cytotoxic T lymphocytes (CTL) in subtype B HIV-1 variants that were isolated from 5 therapy-naive horizontal HLA-disparate donor-recipient pairs from the Amsterdam Cohort Studies on HIV-1 infection and AIDS. METHODOLOGY/PRINCIPAL FINDINGS: In the first weeks after transmission, the majority of donor-derived mutations in and outside donor-HLA-restricted epitopes in Gag, Env, and Nef, were preserved in the recipient. Reversion to the HIV-1 subtype B consensus sequence of mutations in- and outside donor-HLA-restricted CTL epitopes, and new mutations away from the consensus B sequence mostly within recipient-HLA-restricted epitopes, contributed equally to the early sequence changes. In the subsequent period (1-2 years) after transmission, still only a low number of both reverting and forward mutations had occurred. During subsequent long-term follow-up, sequence dynamics were dominated by forward mutations, mostly (50-85%) in recipient-HLA-restricted CTL epitopes. At the end of long-term follow-up, on average 43% of the transmitted CTL escape mutations in donor-HLA-restricted epitopes had reverted to the subtype B consensus sequence. CONCLUSIONS/SIGNIFICANCE: The relatively high proportion of long-term preserved mutations after transmission points to a lack of back selection even in the absence of CTL pressure, which may lead to an accumulating loss of critical CTL epitopes. Our data are supportive for a continuous adaptation of HIV-1 to host immune pressures which may have implications for vaccine design

    Estimating the Fitness Cost of Escape from HLA Presentation in HIV-1 Protease and Reverse Transcriptase

    Get PDF
    Human immunodeficiency virus (HIV-1) is, like most pathogens, under selective pressure to escape the immune system of its host. In particular, HIV-1 can avoid recognition by cytotoxic T lymphocytes (CTLs) by altering the binding affinity of viral peptides to human leukocyte antigen (HLA) molecules, the role of which is to present those peptides to the immune system. It is generally assumed that HLA escape mutations carry a replicative fitness cost, but these costs have not been quantified. In this study, we assess the replicative cost of mutations which are likely to escape presentation by HLA molecules in the region of HIV-1 protease and reverse transcriptase. Specifically, we combine computational approaches for prediction of in vitro replicative fitness and peptide binding affinity to HLA molecules. We find that mutations which impair binding to HLA-A molecules tend to have lower in vitro replicative fitness than mutations which do not impair binding to HLA-A molecules, suggesting that HLA-A escape mutations carry higher fitness costs than non-escape mutations. We argue that the association between fitness and HLA-A binding impairment is probably due to an intrinsic cost of escape from HLA-A molecules, and these costs are particularly strong for HLA-A alleles associated with efficient virus control. Counter-intuitively, we do not observe a significant effect in the case of HLA-B, but, as discussed, this does not argue against the relevance of HLA-B in virus control. Overall, this article points to the intriguing possibility that HLA-A molecules preferentially target more conserved regions of HIV-1, emphasizing the importance of HLA-A genes in the evolution of HIV-1 and RNA viruses in general

    The Efficiency of the Human CD8+ T Cell Response: How Should We Quantify It, What Determines It, and Does It Matter?

    Get PDF
    Multidisciplinary techniques, in particular the combination of theoretical and experimental immunology, can address questions about human immunity that cannot be answered by other means. From the turnover of virus-infected cells in vivo, to rates of thymic production and HLA class I epitope prediction, theoretical techniques provide a unique insight to supplement experimental approaches. Here we present our opinion, with examples, of some of the ways in which mathematics has contributed in our field of interest: the efficiency of the human CD8+ T cell response to persistent viruses

    Acute mucosal pathogenesis of feline immunodeficiency virus is independent of viral dose in vaginally infected cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mucosal pathogenesis of HIV has been shown to be an important feature of infection and disease progression. HIV-1 infection causes depletion of intestinal lamina propria CD4+ T cells (LPL), therefore, intestinal CD4+ T cell preservation may be a useful correlate of protection in evaluating vaccine candidates. Vaccine studies employing the cat/FIV and macaque/SIV models frequently use high doses of parenterally administered challenge virus to ensure high plasma viremia in control animals. However, it is unclear if loss of mucosal T cells would occur regardless of initial viral inoculum dose. The objective of this study was to determine the acute effect of viral dose on mucosal leukocytes and associated innate and adaptive immune responses.</p> <p>Results</p> <p>Cats were vaginally inoculated with a high, middle or low dose of cell-associated and cell-free FIV. PBMC, serum and plasma were assessed every two weeks with tissues assessed eight weeks following infection. We found that irrespective of mucosally administered viral dose, FIV infection was induced in all cats. However, viremia was present in only half of the cats, and viral dose was unrelated to the development of viremia. Importantly, regardless of viral dose, all cats experienced significant losses of intestinal CD4+ LPL and CD8+ intraepithelial lymphocytes (IEL). Innate immune responses by CD56+CD3- NK cells correlated with aviremia and apparent occult infection but did not protect mucosal T cells. CD4+ and CD8+ T cells in viremic cats were more likely to produce cytokines in response to Gag stimulation, whereas aviremic cats T cells tended to produce cytokines in response to Env stimulation. However, while cell-mediated immune responses in aviremic cats may have helped reduce viral replication, they could not be correlated to the levels of viremia. Robust production of anti-FIV antibodies was positively correlated with the magnitude of viremia.</p> <p>Conclusions</p> <p>Our results indicate that mucosal immune pathogenesis could be used as a rapid indicator of vaccine success or failure when combined with a physiologically relevant low dose mucosal challenge. We also show that innate immune responses may play an important role in controlling viral replication following acute mucosal infection, which has not been previously identified.</p

    Host HLA B*allele-associated multi-clade Gag T-cell recognition correlates with slow HIV-1 disease progression in antiretroviral therapy-naïve Ugandans.

    Get PDF
    BACKGROUND: Some HIV infected individuals remain asymptomatic for protracted periods of time in the absence of antiretroviral therapy (ART). Virological control, CD4 T cell loss and HIV-specific responses are some of the key interrelated determinants of HIV-1 disease progression. In this study, possible interactions between viral load, CD4 T cell slopes, host genetics and HIV-specific IFN-gamma responses were evaluated in chronically HIV-1-infected adults. METHODOLOGY/PRINCIPAL FINDINGS: Multilevel regression modeling was used to stratify clade A or D HIV-infected individuals into disease progression groups based on CD4 T cell slopes. ELISpot assays were used to quantify the frequency and magnitude of HIV-induced IFN-gamma responses in 7 defined rapid progressors (RPs) and 14 defined slow progressors (SPs) at a single time point. HLA typing was performed using reference strand conformational analysis (RSCA). Although neither the breadth nor the magnitude of the proteome-wide HIV-specific IFN-gamma response correlated with viral load, slow disease progression was associated with over-representation of host immunogenetic protective HLA B* alleles (10 of 14 SPs compared to 0 of 7; p = 0.004, Fisher's Exact) especially B*57 and B*5801, multiclade Gag T-cell targeting (71%, 10 of 14 SPs compared to 14%, 1 of 7 RPs); p = 0.029, Fisher's Exact test and evident virological control (3.65 compared to 5.46 log10 copies/mL in SPs and RPs respectively); p<0.001, unpaired student's t-test CONCLUSIONS: These data are consistent with others that associated protection from HIV disease with inherent host HLA B allele-mediated ability to induce broader Gag T-cell targeting coupled with apparent virological control. These immunogenetic features of Gag-specific immune response which could influence disease progression may provide useful insight in future HIV vaccine design
    corecore