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Abstract

Background: Some HIV infected individuals remain asymptomatic for protracted periods of time in the absence of
antiretroviral therapy (ART). Virological control, CD4 T cell loss and HIV-specific responses are some of the key interrelated
determinants of HIV-1 disease progression. In this study, possible interactions between viral load, CD4 T cell slopes, host
genetics and HIV-specific IFN-c responses were evaluated in chronically HIV-1-infected adults.

Methodolology/Principal Findings: Multilevel regression modeling was used to stratify clade A or D HIV-infected
individuals into disease progression groups based on CD4 T cell slopes. ELISpot assays were used to quantify the frequency
and magnitude of HIV-induced IFN-c responses in 7 defined rapid progressors (RPs) and 14 defined slow progressors (SPs) at
a single time point. HLA typing was performed using reference strand conformational analysis (RSCA). Although neither the
breadth nor the magnitude of the proteome-wide HIV-specific IFN-c response correlated with viral load, slow disease
progression was associated with over-representation of host immunogenetic protective HLA B* alleles (10 of 14 SPs
compared to 0 of 7; p = 0.004, Fisher’s Exact) especially B*57 and B*5801, multiclade Gag T-cell targeting (71%, 10 of 14 SPs
compared to 14%, 1 of 7 RPs); p = 0.029, Fisher’s Exact test and evident virological control (3.65 compared to 5.46 log10
copies/mL in SPs and RPs respectively); p,0.001, unpaired student’s t-test

Conclusions: These data are consistent with others that associated protection from HIV disease with inherent host HLA B
allele-mediated ability to induce broader Gag T-cell targeting coupled with apparent virological control. These
immunogenetic features of Gag-specific immune response which could influence disease progression may provide useful
insight in future HIV vaccine design.
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Introduction

Although there is urgent need for a protective human

immunodeficiency virus (HIV) vaccine, the correlates of effective

immune protection from HIV-1 infection remain unclear. RNA

viral load and CD4 T-cell counts are the key markers of HIV-1

disease progression. The relationship between HIV-induced

immune responses and virological control remains contentious.

Inverse correlations between HIV-specific T cell responses and

concurrent plasma viral load have been demonstrated by some

investigators [1,2,3,4] but could not be confirmed by others

[5,6,7,8,9]. Furthermore, some studies reported discordant

correlations between T-cell responses and viral load and

demonstrated these relationships to be determined by the infecting

clade, targeting of sub-dominant epitopes [10], region of HIV

targeted [4,11,12] and disease status [13].

Some antiretroviral drug naı̈ve HIV infected individuals remain

asymptomatic for protracted periods showing relatively lower

levels of plasma viral RNA and stable CD4 counts, and this

beneficial state has been attributed to complex features associated

with viral, host genetic and environmental factors. These features

include slow or arrested viral evolution [14,15,16]; HIV subtype

variation [17,18]; a broadly directed T-cell response mostly

targeting Gag [2,9,11,19]; heterozygosity for the CCR5 D32

HIV receptor; enrichment of certain HLA haplotypes and HIV

polymorphisms [20,21,22] and lack of immune activation [23].

True immune correlates of controlled HIV infection remain

obscure. The cellular arm of the host immune system has been

associated with partial virological control, remarkably demon-

strated in studies of CD8+ T-cell depletion; CD8 T-cell immune

escape and by the association between specific HLA class I alleles

and favourable HIV disease outcome [21,24]. Nevertheless these
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correlates are not absolute and, for example, a vaccinee who

exhibited HIV-specific T- cell polyfunctionality with the appro-

priate memory phenotype, and targeting epitopes associated with

long-term non-progression, became HIV infected [25]. Further-

more, an HIV vaccine based on the recombinant Adenovirus 5

(rAd5)-vector, showed good HIV-specific immunogenicity in

Phase I studies using IFN-c ELISpot assay, and exhibited long-

lasting, multifunctional responses as monitored by polychromatic

flow cytometry, but failed to protect Ad5-seronegative HIV

acquisition in vaccinees with prior immunity to adenoviruses,

reviewed in [26].

We used CD4 T-cell slopes to define HIV disease progression in

a population of HIV infected, ART-naı̈ve study participants in

order to evaluate possible correlates of immune protection in HIV

disease progression. We performed high resolution HLA typing,

viral load estimation, CD4 T-cell quantitation and evaluation of

HIV-induced IFN-c responses to consensus HIV Gag, Nef, Rev,

Vif, Tat, Pol, Vpr and Vpu peptides in order to investigate

potential protective correlations at a single time point.

Results

Cohort stratification
Retrospective six-monthly CD4 T-cell counts were utilised in a

multilevel regression model to stratify the cohort into HIV disease

progression groups based on individual participant CD4 slopes.

The median participant observation time from first CD4 count to

recruitment into this study was 61 months (range 18–97 months).

Using the model-derived CD4 slopes, 110 participants, 16 (15%)

males and 94 (85%) females, were classified as rapid progressors

(RP, n = 7, stratification 1), normal progressors (NP, n = 89,

stratifications 2, 3 and 4) or slow progressors (SP, n = 14,

stratification 5), illustrated in table 1. RPs were individuals with

CD4 slopes steeper than 2101 CD4 cells per ml/year; SPs had

CD4 slopes which were rising (.16 CD4 cells per ml/year), while

individuals with CD4 slopes between 291 CD4 cells per ml/year

to +10 CD4 cells per ml/year were classified as normal progressors.

These cut-offs were selected so as to be distinguishable; no

participant had a CD4 decline between 2101 and 291 CD4 cells

per ml/year, nor between 10 and 16 CD4 cells per ml/year. Rapid

progressors had a median annual CD4 T cell decline of 113 cells

per ml/year (interquartile range [IQR] 116 to102 cells per ml/

year). NPs had median annual CD4 T cell decline of 27 (IQR 51

to13) while SPs had median annual CD4 T-cell count rises of 24

cells per ml/year (IQR 20 to 46 cells per ml/year), table 1.

Study population demographics
The RPs and SPs evaluated in this study comprised of 19

females and 2 males with no significant difference in median age at

recruitment between the two groups ([SP 37 years; interquartile

range 30–43 years] and [RP 31 years; interquartile range 28–

44 years]), table 2. All participants included in the data analysis

were antiretroviral therapy naı̈ve. Viral load data used in all

analyses were computed as the mean of up to 3 six-monthly viral

load measurements evaluated after recruitment into this study,

table 1. The study participants were predominantly infected with

HIV subtypes A and D, table 2.

Comparison of plasma viral loads
We evaluated the relationships between HIV-1 disease

progression and plasma HIV RNA viral loads as these are key

factors known to be associated with HIV-1 disease progression.

The mean log10 plasma viral loads over the entire observation

period were significantly higher in RPs (5.46 log10 copies/mL)

compared to SPs (3.65 log10 copies/mL); p,0.001, Students t-

test, figures 1a. These data support virological control as one of the

correlates of protection from HIV disease progression.

Relationship between CD4 slopes and plasma viral loads
We evaluated the data for the relationship between CD4+ T-cell

slopes and plasma viral loads, figure 1b. In the whole cohort, there

was an inverse correlation between CD4+ T-cell slopes and plasma

viral loads (Spearman’s r= 20.45; p,0.0001, Spearman rank

correlation test). An overall cohort regression coefficient of 220

(95% CI 228 to 214); p,0.0001implied that each log10

increment in plasma RNA load accounted for an annual loss of

20 CD4+ T-cells/ml in this cohort. When RP and SP were

evaluated together excluding the NPs, each log 10 increment in

plasma viral load accounted for an annual loss of 37 CD4+ T-

cells/ml (95% CI 254 to 220 ); p,0.001. We were unable to

evaluate RP or SP independently due to sample size limitations.

Table 1. Stratification of cohort into HIV-1 disease progression groupings.

No of
Individuals

Range of CD4 counts
utilised per person Median annual CD4 count change (Interquartile range)

Cut-off CD4
T-cells per ml/year

Stratification
group

Undjusted1 Adjusted2

7 8–18 2113 (2116 to 2102) 2118 (2119 to 2109) ,2101 1

8 10–17 281 (289 to 275) 288 (295 to 286) 291 to +10 2

78 10–27 224 (247 to 213) 238 (258 to 229) 3

3 20–21 +10 (10 to 10) 20 (210 to 20) 4

14 14–24 +24 (20 to 46) +9 (5 to 19) .16 5

1CD4+ T cell decline without adjusting for first CD4 count and age of the participant.
2CD4+ T cell decline after adjusting for first CD4 count and age of the participant.
Table 1 illustrates the stratification of 110 chronically HIV-1 adults into distinct progression groups. Six-monthly retrospective CD4 counts were used in a multilevel
regression model to derive individual participant CD4 slopes. The slopes were calculated over a median observation time of 610 months (minimum-maximum 18–
97 months). Annual CD4+ T-cell changes are expressed as medians with interquartile ranges. Positive (+) symbols indicate increasing CD4+ counts while (2) indicates
decreasing CD4+ counts over time. Individuals in the extreme stratification group 1 were selected as rapid progressors (RP, n = 7) while those in group 5 were selected
as slow progressors (SP, n = 14). Groups 2, 4and 4 were categorised as normal progressors (NP, n = 89). Normal progressors were those with CD4 slopes between 291/
year to +10/year; RPs had CD4 slopes ,291/year while SPs had CD4 slopes .+10/year.
doi:10.1371/journal.pone.0004188.t001
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These data implied that trends in CD4+ T-cell slopes were

partially influenced by the levels of circulating virus.

Participant host genetics
We evaluated the relationship between the host HLA alleles and

HIV disease progression in this cohort. Slow progressors possessed

significantly more of any of the following previously reported

protective HLA B alleles B*27, B*57, B*5801, B*63, B*13, B*44,

B*39 or B*81 (10 of 14) compared to RPs (0 of 7); p = 0.004,

Fisher’s Exact test, table 2. Most of these protective HLA were

attributed to enrichment with HLA B*5801 and B*5701/*5703

alleles (including B*63 which is known to present similar epitopes

as those presented by B*57). These alleles occurred at a frequency

of 8 of 14 SPs compared to 0 of 7 RPs; p = 0.018, Fisher’s Exact

test, table 2. These data imply an association between slow HIV-1

disease progression and host immunogenetic determinants char-

acterised by overrepresentation of protective HLA B alleles.

Virological factors
The infecting clade of HIV-1 was determined from partial

sequences of the Gag p17 and p24 Gag region and this cohort was

found to be mainly infected with HIV-1 clades A or D virus, table 2.

We investigated the degree of diversity or signature sequences within

RPs but absent in SPs. This evaluation was limited by the small

section of Gag sequence and the small number of RPs sequences

which were mainly subtype D. Where we could make comparisons

using the incomplete Gag sequence data, there was no apparent

correlation between viral sequence diversity and HIV disease

progression (data not shown). We could not ascertain if there were

other Gag regions with protective or unfavorable signature sequences.

Because SPs were enriched with protective B*57 and B*5801

alleles, we used the available sequence data to evaluate the

presence of Gag mutations known to impair virus replication and

fitness, table 3. Both T242N and A163G substitutions in the

TSTLQEQIAW (TW10; gag 240–249) and KAFSPEVIPMF

Table 2. Study population demographics, host genetics and multi-clade gag recognition.

PTID
Annual CD4
slope Gag IFN-c

Infecting
clade
Determined
from Gag Age Gender

Mean
Log10vL HLA-A HLA-B HLA-C

A B C D

RP1 2114.1 D 30.5 F 5.77 A*36, A*74 B*45, B*72, Bw*06 Cw*2, Cw*6

RP2 2102.3 nd 41.5 F 5.90 A*02, A*68 B*07, B*45, Bw*06 Cw*7, Cw*16

RP3 2116.0 nd 26.5 F 6.34 A*02, A*74 B*08, B*45, Bw*06 Cw*7, Cw*16

RP4 2101.5 D 25.5 F 5.18 A*2301, A*6601 B*4501, B*5802, Bw*04,
Bw*06

Cw*0602

RP5 2113.3 + D 41.5 F 5.58 A*33, A68 B*42, B*49, Cw*07, Cw*17

RP6 2116.4 + A 43.5 F 4.84 A*3002, A*33 B*1510, B*5101/05 Cw*03, Cw*04

RP7 2106.1 + + nd 28.5 F 4.65 A*3004/06, A*8001 B*1401,
B*1801/03/05/08,

Cw*0202,
Cw*0302/06

SP1 +43.7 nd 28.5 F 3.96 A*3401, A*6601 B*4403, B*8101,
Bw*4/*6, Bw*6

Cw*0401, Cw*0701

SP2 +16.3 + + + + D 39.5 F 4.97 A*0201/*0209, A*2301 B*0801, B*4501 Bw*06 Cw*10, Cw*16

SP3 +22.0 + + + D 48.5 F 3.79 A*2902 B*57, B*5801 Cw*04, Cw*07

SP4 +37.7 A 33.5 M 2.69 A*02, A*30 B*57, B*58 Cw*04, Cw*06

SP5 +26.1 + + A 35.5 F 4.18 A*6601, A*7401/*7402 B*5301, B*5802, Bw*4,
Bw*6

Cw*0401, Cw*0602

SP6 +20.9 + + D 29.5 F 4.52 A*2301, A*3601 B*5301, B*3910, Bw*4,
Bw*6

Cw*04, Cw*12

SP7 +77.2 + + A 41.5 F 1.65 A*0202, A*3003/*3003 B*4501, B*5801, Bw*4,
Bw*6

Cw*0701, Cw*1601

SP8 +16.4 + + D 55.5 F 3.19 A*0201, A*6802 B*63, B*72 Cw*02, Cw*14

SP9 +22.7 + + + D 36.5 F 3.64 A*0101, A*0301 B*4415, B*5701, Bw*4 Cw*0701, Cw*1801

SP10 +22.6 + + + + nd 37.5 F 1.65 A*3002, A*7401/02/03 B*49, B*5703 Cw*0701/05/06

SP11 +49.1 nd 25.9 F 3.97 A*0101, A*3001 B*4201, B*5801,
Bw*4/*6, Bw*6

Cw*10, Cw*17

SP12 +44.8 + + D/B 31.1 F 3.78 A*3001, A*6602 B*1801, B*67, Bw*1 Cw*0704, Cw*1203

SP13 +19.0 + + + A 34.5 M 4.20 A*0201/*0209,
A*3002/*3003 A*30

B*5701, B*72,
Bw*4, Bw*6

Cw*0202, Cw*1801

SP14 +54.5 nd 42.2 F 4.95 A*0201/*0209 B*4201, B*4501, Bw*6 Cw*1601, Cw*1701

Table 2 illustrates study participant demographics and IFNc response to clades A, B, C and D gag peptides. CD4+ T –cell slopes were derived from multilevel regression
analysis of retrospective 6-monthly CD4+ T-cell counts. Under annual CD4 slope, symbol (2) indicates model-derived decreasing CD4 slopes while (+).indicates
decreasing CD4 slopes over time. Under Gag-induced IFN-c, areas marked + indicate induction of Gag-induced IFN-c responses to the respective clade of Gag peptides,
blank areas indicate lack of IFN-c response. Clade of the infecting HIV virus was determined from partial sequences of the Gag region, ‘‘nd’’ indicates not done. Bold
highlights indicate HLA alleles that have been reported to confer protection from HIV disease.
doi:10.1371/journal.pone.0004188.t002
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(KF11; Gag 162–172) Gag epitopes respectively, and known to be

associated with impaired virus replication and fitness were

observed in three of the four B*57/*5801 SP participants,

table 3. These data indicate that slow disease progression was

associated with a host genetic mechanism characterised by HLA-

mediated immune pressure coupled with apparent impairment of

viral replication.

Characterisation of HIV-induced IFN-c responses
We evaluated the relationship between the HIV-induced Gag,

Nef, Tat, Vif, Rev, Vpr, Vpu and Pol T-cell recognition and HIV

disease progression; figures 2 and 3a. Overall, HIV specific T-cell

responses were detected against Gag, Nef, Tat, Vif and Pol

proteins in a proportion of both RP and SP; Vpr responses were

seen only in a single SP while there were no detectable responses

to Rev or Vpu in any RP or SP participant. Overall, the median

magnitudes of response did not significantly differ between RPs

and SPs, although total Gag-induced responses tended to be

higher in SPs (median 2253 SFU/million PBMCs, IQR 0 to 8756)

compared to RPs (median 70 SFU/million PBMCs, IQR 0 to

1552); p = 0.095, Kruskal Wallis test. These data suggest that slow

HIV disease progression was associated with preferential Gag T-

cell recognition in this cohort.

Characterisation of Gag-induced T-cell recognition
The consensus peptides evaluated in this study were determined

by availability from the NIH reagent repositories. Only peptides

representative of clade B consensus were available, except for the

Gag region for which Clades A, C and D consensus peptides were

additionally obtained. We evaluated how the repertoire of

consensus Gag peptide sets used influenced quantification of

HIV-1 specific immune responses. Overall, use of four peptide sets

Figure 1. Evaluation of relationship between HIV disease progression and viral loads. CD4 slopes were computed by multilevel regression
modelling of six-monthly retrospective participant CD4 counts. The median observation time over which CD4 slopes were calculated was 61 months
(minimum 18 and maximum 97) months. Plasma viral load was quantified using BayerTM bDNA assay according to the manufacturer’s protocol; the
plasma viral load minimum detection threshold was 50 RNA copies/ml. Figure 1A illustrates the relationship between CD4 slopes and viral loads,
#denotes RPs, N are NPs; while [are SPs; 1B compares mean viral loads between groups while figure 1C compares plasma viral loads in SPs who had
HLA alleles known to be protective as previously described and to those who did not. The lines running parallel to the Y and X axis (figures 1A and 1B
respectively) indicate the minimum detection limit for evaluation of plasma viral loads. For purposes of statistical analyses and graphical
representation of the data, undetectable plasma viral loads were assumed to equate to 45 RNA copies per ml.
doi:10.1371/journal.pone.0004188.g001
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detected significantly broader responses; six more participants

showed Gag T-cell recognition when stimulated with four sets of

Gag peptides compared to when only clade B peptides were

evaluated, (13 of 21 responders compared to 7 of 21 respectively),

table 2 and figure 3b. These T-cell responses principally targeted

p17 and p24 Gag regions, figure 4. Taking into account the

sequence lengths, there was no significant difference between

targeting of the Gag p17 and p24 regions.

Overall, multi-clade Gag T-cell recognition was observed in

62% (61 of total 99) of the study participants (data not shown).

Table 3. Evaluation of sequence data for Gag substitutions known to impair viral fitness.

Gag 162–172 A163G substitution Gag 240–249 T242N substitution Protective HLA

KAFSPEVIPMF TSTLQEQIAW

RP1 KAFSPEVIPMF RP1 TSTLQEQX

RP2 KAFSPEVIPMF

RP4 TSTLQEQI

SP2 TSTLQEQI

SP3 KAFSPEVIPMF SP3 TSNLQEQI B*57, B*5801

SP5 KAFSPEVIPMF SP5 TSTLQEQV

SP6 KAFSPEVIPMF SP6 TSTLQEQV B*3910

SP7 KGFSPEVIPMF B*5801

SP8 KAFSPEVIPMF SP8 TSTP---- B*63

SP9 RAFSPEVIPMF B*5701

SP13 RGFSPEVIPMF SP13 TSTPQEQM B*5701

Table 3 illustrates the sequence variation within the HLA B5701 and B*580-restricted p17Gag 162–172 KAFSPEVIPMF (KF11) and p24Gag 240–249 TSTLQEQIAW (TW10)
epitopes. Bold and underlined letters indicate substitutions in these Gag epitopes known to incur significant reduction in viral replicative capacity following immune
pressures. Only known protective HLA alleles are indicated. Only available sequence data is presented.
doi:10.1371/journal.pone.0004188.t003

Figure 2. Relationship between HIV-induced IFN-c magnitudes and disease progression. Figure 2 illustrates the total magnitudes of HIV-
induced IFNc responses against clades A, B, C and D Gag; and clade B Nef, Tat, Rev, Vif, Vpr, Vpu and Pol proteins. Choice of clades of peptide
evaluated was dictated by availability from the NIH reagent programme. It is likely that the total IFN-c response to Nef, Tat, Rev, Vif, Vpr, Vpu and Pol
would increase if peptide sets from all four clades had been used. The primary purpose of these graphs is to compare responses induced between SP
and RP. This goal is achieved even though Gag will evidently have a higher response rate as all four clades are used, as opposed to only clade B for
other regions. The cut off for a positive response was at least 50 SFU/million PBMCs after subtracting off twice the mean background. Data is
presented as net response after subtracting off all backgrounds. All net responses below the cut-off have been equated to zero response. Horizontal
lines inside the graphs indicate cut-off points for a positive response. Horizontal bars around the data points indicate medians, Note that when more
than 50% of the data is zero, the median is zero therefore horizontal bars are missing where medians were zero. N indicates the total number of
peptides analysed for that particular HIV protein, note that different numbers of peptides per protein contribute these observed magnitudes.
doi:10.1371/journal.pone.0004188.g002
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Eleven participants were excluded from this analysis because they

did not have data on all four Gag clades. These multi-clade

responses were of higher magnitude and significantly more

common among SPs (71%, 10 of 14) and NPs (64%, 58 of 78)

compared to RPs (14%, 1 of 7), figures 5a, 5b and 5c; p = 0.029,

Fisher’s Exact). The frequency of multi-clade Gag T-cell

recognition was not significantly different between SPs and NPs.

While both SPs and RPs recognised Clades A and D Gag peptides,

only SPs exhibited cross reactivity to the non-endemic clades B (6

of 14 ; p = 0.06, Fisher’s Exact) and C (8 of 14; p = 0.018, Fisher’s

Exact), table 2. These findings suggest that slow disease

progression was associated with broader multi-clade Gag T-cell

recognition characterised by preferential targeting of the p17 and

p24 regions. The data also indicate that quantitation of HIV-

induced T-cell responses is influenced by the number of different

consensus HIV peptide sets used.

Relationship between IFN-c response, host HLA alleles
and plasma viral loads

We evaluated the relationships between the HIV-induced IFN-c
responses and plasma viral loads. Surprisingly, while SPs had

significantly higher Gag-induced IFN-c responses and significantly

lower viral loads, we did not find a statistically significant

relationship between IFN-c responses and plasma viral load.

However, the sample size evaluated in this cohort was small and

this could have limited the reliably of the statistical evaluation.

Because SPs had significantly more representation any of the

previously described protective HLA B alleles, we assessed SPs for

the relationship between possession of these protective HLA B

alleles (B*57, B*5801, B*63, B*13, B*44, B*3910, B*8101) and

plasma viral loads. Slow progressors with known protective HLA B

alleles had borderline significantly lower mean plasma viral loads

(3.33, 95% CI 2.60 to 4.06) compared to SPs who lacked those B

alleles (4.47, 95% CI 3.53 to 5.41); p = 0.060, Student’s t-test,

figure 1c. These data suggest that the apparent virological control

observed in slow disease progression was partly mediated through

inherent host immunogenetic mechanisms.

Discussion

The main objective of this study was to characterise correlates

associated with protection from HIV-1 disease progression as

Figure 3. Breadth of HIV-induced IFN-c T-cell recognition. The peptides sets evaluated were dictated by availability from the NIH AIDS
reagent programme; clades A, B, C and D Gag peptides were obtainable while only clade B was available for Nef, Tat, Rev, Vif, Vpr, Pol and Vpu
proteins. Figure 3 compares the proportion of participants (%) inducing HIV-specific IFN-c responses using clade B peptides only, figure 3A; as
opposed to multiple clade Gag peptide sets, figure 3B.
doi:10.1371/journal.pone.0004188.g003
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determined by CD4+ T cell slope. The CD4 slope which represents

changes in numbers of CD4 T-cells over time strongly predicts HIV

disease progression; an annual CD4 depletion of 10 additional cells/

ml has been associated with a 2% increased likelihood of developing

AIDS [27,28]. We used CD4 T cell slopes to stratify cohort

participants into distinct HIV disease progression groups in order to

investigate possible relationships with protection. CD4 T-cell slopes

in individual participants were estimated using a multilevel

regression analysis model that predicted CD4 trends over time.

Because the distinction between RP, NP, and SP was determined

based on progressive CD4 changes, individual CD4 slopes were

dispersed in a continuum distribution where the difference between

adjacent groups would not be significant but there would be an

expected trend that produces significant differences between the

extreme groups (RPs and SPs). For example, variables in

participants at the slow end of the NP would not be expected to

be significantly different from those of the neighboring SPs.

Consequently, the two extreme groups with CD4 slopes markedly

different from each other were selected for more detailed evaluation

of possible correlates of protection from HIV disease progression.

Based on the multilevel model-derived stratifications, variables like

plasma viral loads and protective HLA alleles were also demarcated

with significant differences between the extreme groups. It is

important to note that HLA typing in this study was performed after

all other experiments and there was no pre-selection. These data

indicate that in the absence of known dates of infection, CD4 slopes

can be used to stringently delineate participants into distinct disease

progression groups.

Evaluation of HIV-induced IFN-c responses in this study was

based on recognition of peptides derived from consensus HIV-1

sequences. The clades of peptides used were limited by availability

through the NIH reagent repository; clade B peptides were used

for all HIV regions except Gag for which Clades A, C and D were

available. Where we could make comparisons on the limited

sequence data (data not shown), there appeared no obvious

consistent sequence variation between the RPs and SPs and the

consensus, that is, within-group variation was not significantly

different from between-group variation in similar HIV-1 clades

implying that differences in disease progression were not

attributable to viral diversity.

The use of consensus peptides to evaluate HIV-induced

responses may have underrepresented the possible extent of the

response repertoire. Furthermore, use of clade B peptides in a

clade A or D infected population may have additionally

underestimated the eventual breadth of responses. This was

evidenced by the fact that six additional Gag responders were

detected when multiple peptide sets were evaluated compared to

when clade B peptides were analysed alone. Detection of more

responses using four consensus peptide sets compared to one

peptide set signifies how use of different peptide sets affects T-cell

response quantification and highlights the importance of maxi-

mizing coverage of HIV-1 sequence diversity when evaluating

CTL responses in HIV-1-infected individuals. These findings add

to other studies that highlighted limitations arising from evaluation

of HIV-1 induced immune responses using restricted repertoires of

peptide sets [2,29].

We found HIV-specific IFN-c responses to Gag, Nef, Tat, Pol,

Vif and Vpr in both RPs and SPs, but not to Rev and Vpu in this

population. These responses did not significantly differ between

RPs and SPs except for Gag-induced responses that tended to be

higher in SPs compared to RPs suggesting a possible relationship

between targeting of Gag and slow HIV-1 disease progression.

These findings are consistent with previous findings in a clade C

HIV-1 chronically infected cohort where only Gag responses but

not Rev, Tat, Vif, Vpr, Vpu and Nef were associated with

protection [11]. Furthermore, when RPs, NPs and SPs were

compared, there was significantly more Gag T-cell recognition

among SPs and NPs compared to RPs. Higher frequencies and

magnitudes of Gag-induced responses in SPs compared to RPs

suggests a beneficial relationship between targeting of Gag and

slow HIV-1 disease progression, and add to several previous

studies that have previously reported associations between HIV-1

Gag-specific T-cell targeting and protection [2,3,9,11,30,31,32].

Divergence of HIV-1 into multiple clades poses a worldwide

challenge for HIV vaccine development. Demonstration of T-cell

cross recognition of epitope sequences from different clades may

offer hope for a global vaccine. Interpreted from IFN-c ELISpot

reactivity to the multiclade peptide sets, cross-clade immune

recognition has been previously reported in several African

populations [33,34,35,36,37,38], but the relationship between

these responses and HIV disease progression has not been

previously described. Based on the previous assumptions that

ELISpot reactivity to the multiclade Gag peptide sets predicts

recognition of virally-infected cells, we found slow disease

Figure 4. Distribution of Gag T-cell recognition among slow progressors. Figure 4 illustrates the frequency of Gag T-cell recognition across
the p17, p24 and p15 Gag region among the slow progressors. The frequency is presented as the proportion of SP individuals with Gag T cell
recognition. The horizontal axis represents the peptides recognised.
doi:10.1371/journal.pone.0004188.g004
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progression to be significantly more associated with multi-clade

Gag T-cell recognition; SPs and NPs had significantly higher

multiclade Gag T-cell recognition compared to RPs suggesting a

beneficial relationship between Gag T-cell targeting and slow

disease progression. We did not find significant difference in Gag

multi-clade T-cell recognition between SPs and NPs, this is

probably explained by the fact that the stratification into HIV

disease progression groups was based on a continuum of CD4

slopes which was not expected to significantly demarcate between

adjacent groups but would result in a considerable difference

between the extreme RPs and SPs.

However, these multi-clade cross reactivity findings need to be

interpreted with caution taking into consideration two recent

studies that have questioned the validity of using single

concentrations of peptides in ELISpot and intracellular cytokine

staining assays for assessing cross-clade CTL activity by showing

that cross clade reactivity determined by these assays does not

always predict recognition of virally-infected cells [39,40].

Evaluations of functional avidity of the epitope-specific T cells

and/or actual ability to inhibit viral replication in vitro will be

necessary to properly elucidate the fine specificities of these cross-

reactive responses which was not established in this study due to

limitations in cell numbers.

Inverse correlations between HIV-induced IFN-c responses and

plasma viral load have been reported by some investigators [3,41],

but could not be confirmed by others [5,7]. Studies that

demonstrated inverse correlations between IFN-c responses and

plasma viral loads related this to a broader HIV-1 epitope

repertoire [9,42] which in this study could have been limited by

the use of peptides based on consensus sequences instead of

autologous sequences. Others attributed virological control to the

ability to induce HIV-specific polyfunctional responses but not to

total HIV-specific CD8+ T-cell IFN-c frequencies or magnitudes

implying that rather than quantity or phenotype, the quality of the

CD8(+) T-cell functional response correlated with protection from

HIV disease progression [43]. In this study, we found no

Figure 5. Relationship between multiclade Gag T-cell recognition and HIV disease progression. Figure 5 illustrates the total magnitudes
of HIV Gag-induced IFNc responses evaluated using ELISpot assay. A test was considered positive when response was $50 SFU/million PBMCs and at
least twice the mean background response (6 wells of cells and media response only). The data is presented as net response; all background values
have been subtracted. For purposes of statistical analysis and graphical representation, all negative responses (less than 50 net SFU/million PBMCs)
were equated to zero SFU/ml PBMCs. Because the Y axis is presented in log, negative responses are not represented on these graphs. The X-axis
represents individual participants. The horizontal dotted lines parallel to the X-axis represent the cutoff for a positive response. Slow progressors (SPs)
are presented in figure 5A; rapid progressors (RPs) are in figure 5B while normal progressors are in figure 5C.
doi:10.1371/journal.pone.0004188.g005
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correlation between HIV-induced IFN-c responses and plasma

viral loads; however such statistical evaluation was limited by the

small sample size of our cohort.

Despite the previously reported relationships between polyfunc-

tional T-cell responses and protection from HIV-1, clarification of

correlates of protection remains elusive. More recent studies have

demonstrated that spontaneous control of viraemia may occur

even in the absence of highly polyfunctional CD8+ T cell

responses [44], while others found no major difference in T-cell

polyfunctionality between rapid and slow progressors [45,46,47]

implying that the correlates of protection from HIV disease are not

readily discernible with the standard assays used to measure

immune responses. In the current study, four slow progressors who

lacked measurable Gag IFN-c responses had marginal IFN-c
responses to Pol, Tat or Vpr (data not shown) further implying that

the IFN-c producing T cells may not be the only relevant subsets;

factors other than IFN-c may have contributed to the observed

slow disease progression. Three of these four SPs possessed HLA

B*57 or B*5801 or B*8101 that have been demonstrated to be

associated with virological control implying possible involvement

of a host HLA associated cellular immune mechanism other than

IFN-c investigated here.

Evidence for qualitative differences in protective HIV-induced

T cell responses arise from immunogenetic studies that have

revealed associations between expression of particular alleles such

as HLA-B*57, B*5801, B*8101 and B*27 with successful

virological control [16,48,49,50,51] and associations between

expression of other alleles such as HLA B*5802, B*18 and HLA

B*3502/03 with unsuccessful control of HIV [21,52,53]. The

host’s genetic background plays a vital role in the evolution and

immune control of HIV-1 infection and expression of particular

HLA B alleles has been reported to have the strongest influence on

viral load, CD4 count and selection pressure on the virus [50].

Several reports have demonstrated over representation of HLA

B*27, and B*57/*5801 alleles with slow HIV disease progression;

HLA*B63 has been demonstrated to confer protection through

presentation of epitopes similar to those presented by HLA-B*57,

while others such as HLA-B*13, HLA B*44, HLA B*39 and HLA-

B*81 alleles have also been associated with protection

[2,21,22,48,49,50,51]. In contrast, HLA B*5802 and B*18 have

been linked to high viraemia [52,53]. Despite the limited sample

size in this study, we observed an over representation of previously

reported protective HLA B alleles especially B*57/B*58 within

this cohort. Furthermore, slow progressors who had protective

HLA B alleles had lower plasma viral loads than those who did not

implying a host HLA driven beneficial relationship. This apparent

differential distribution of protective HLA profiles according to

level of viraemia suggests an important host genetic and/or

immunologic mechanism to protection from HIV disease

progression in this population.

HLA B57/B58-driven immune pressure on two Gag epitopes

has been demonstrated to result in immune escape with

consequential virus fitness cost. Several previous reports have

demonstrated that selection pressure on Gag epitopes TSTLQE-

QIAW (TW10; gag 240–249) and KAFSPEVIPMF (KF11; Gag

162–172) induces immune escape through T242N and A163G

substitutions respectively, resulting in impaired viral replication

and reduction in virus fitness [21,41,54,55,56,57]. Others have

linked the beneficial clinical outcome of enrichment of HLA B57/

5801 in long term non-progressors to impaired HIV-1 replication

capacity rather than differences in CTL escape mutations or CTL

activity against epitopes in Gag [16]. The mechanism for

virological control was not fully established in this cohort.

However, there was evidence of immune escape in the KF11

and TW10 Gag epitopes with substitutions known to be associated

with impaired virus fitness in three of the four evaluated B*57 slow

progressors partly explaining the apparent virological control

observed in these individuals.

Taken together, these findings suggest that slow HIV-1 disease

progression in this cohort was associated with a host immunoge-

netic mechanism that was partially mediated through preferential

targeting of Gag and intrinsic immunogenetic HLA B-driven

immune pressure in critical Gag regions as well as host genetic

associated relative control of HIV replication.

These data are consistent with data from studies that have

related HLA-class I alleles and targeting of multiple Gag epitopes

with relative suppression of viraemia, and have implications for

HIV-1 vaccine development.

Materials and Methods

Study population
110 study participants were recruited from a Medical Research

Council (MRCUK)-funded, HIV-infected ‘‘prevalence’’ cohort

attending The AIDS Support Organisation (TASO) HIV

counseling and care services, in Entebbe, Uganda. This cohort is

largely infected with HIV-1 clades A and D and is predominantly

female. Participant’s CD4+ T-cell counts were enumerated at 6-

monthly intervals for up to 7 years. Sixteen participants reported

ART use during the course of observation and their data was

truncated at the point of ART initiation. All data reported here is

therefore based on ART-naı̈ve participants. The Uganda Virus

Research Institute Science and Ethics Committee as well as the

National Council of Science and Technology approved the study.

All subjects provided written informed consent for participation.

After classification of the participants, blood specimens were

collected to concurrently evaluate the HIV viral load, infecting

clade and HIV-specific IFN-c response. Participant demographics

are illustrated in tables 1 and 2.

Stratification of participants into HIV disease progression
groups

Six-monthly CD4 T-cell counts were used to compute CD4 T-

cell slopes in order to stratify the participants into discrete HIV

disease progression groups (table 1). Disease progression was

estimated using a random effects multilevel regression model.

Individual slopes of CD4 T-cells were estimated simultaneously for

all patients. CD4 decline varies across time, generally being

steeper in the early stages and less steep at later stages. The slope

therefore changes over time. To estimate the CD4 curve, we used

all CD4 counts available, including those that were taken up to

6 years before 2002. Blood for CD4 slopes evaluation was drawn

from 1996 to 2006, blood for IFN-c evaluations was drawn from

2002. In order to assess the CD4 decline, we included a term in

the statistical multilevel model for pre/post 2002 CD4 counts.

Once a curve was determined, we then estimated the average post-

2002 slope by taking two slope points on the curve and averaging

them. The two slope points taken were: the estimate of the slope

during the first month of 2002, and the estimate of the slope

during the first month of 2006 (4 years later). Some participants

did not have a CD4 data point in 2006. However, the estimated

slope varies across time, so in order that the estimate be consistent

across all participants, we used the regression coefficients to

estimate what the slope in the first month of 2006 would be. For

some participants, their baseline CD4 T-cell count was taken early

in the course of their disease progression; while for others, their

baseline CD4 count was taken later in the course of their disease

progression. To control for the stage of disease progression at
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baseline, the multilevel regression model included an interaction

term between baseline CD4 and time. In order to determine

progression groups, the CD4 decline was examined, controlling for

both the baseline CD4 and age of the participant. Gender was not

included in the final model because it has already been shown that

gender had no significant impact on CD4 decline in this

population (personal communication from Leigh Anne Shafer).

CD4 decline outliers on the fast progression tail of the normal

distribution curve were classified as rapid progressors (RP;

[stratification group1]), table 1. Outliers on the slow progression

tail of the normal distribution curve were classified as slow

progressors (SP; [stratification group 5]), table 1. Rather than use

an absolute cut-off, such as the 95th percentile, outliers were

determined visually. That is, the steepness of the 110 CD4 declines

was on a continuum, and the rapid and slow progressors were

determined by a reasonable gap in the continuum.

After visual inspection for a distinct gap in the continuum,

disease progression groups were determined. RPs were those with

CD4 slopes less than 2101 cells per ml/year; NPs had CD4 slopes

between 291 and +10; SPs had CD4 slope that were rising by at

least 16 cells per ml/year. Because the participants were stratified

by CD4 slope changes, the parameters evaluated in these groups

would be distributed as a continuum spectrum where the

difference between two adjacent groups is not significant but

there would be significant difference between the RP and SP

extreme groups. Consequently, 14 SP and 7 RP derived from the

two extreme groups were selected for subsequent evaluation of the

relationships between HIV-induced T-cell response and disease

progression.

While individual CD4 measurements may include errors and

random noise, the multilevel model helped to overcome this by

utilising CD4 counts from all study participants in order to

estimate the individual participant CD4 slope. This method was

particularly important for participants on whom very few CD4

measurements were available. Without the multilevel regression

modelling approach, an estimated slope obtained from only a few

CD4 T-cell counts would be very unreliable; the multilevel

modelling approach took this into account by reducing the weight

assigned to individuals with few CD4 count measurements and

bringing their estimated slope closer to the mean slope across all

individuals. Using all participants’ CD4 counts, an estimate of the

variance in CD4 slope across participants was obtained. By

combining individual 6-monthly interval CD4 measurements with

the group variance, the multilevel regression model obtained the

best estimate of CD4 slope for each individual participant resulting

in distinct stratification into rapid and slow progressors.

The average baseline CD4 T-cell counts, on or after the date of

the specimen used to assess viral load, infecting clade and HIV-

specific IFN-c response, across all 110 participants, was approx-

imately 500 cells/mL; this was assumed to be the cohort starting

CD4 T-cell count for each participant, after determining their

individual regression coefficients for CD4 decline. Because CD4

decline varies across time, average CD4 decline was computed by

assessing the decline at two points and then averaging them. The

two points were enrolment and 48 months post-enrolment,

assuming a constant starting CD4 T-cell count of 500 cells/mL

for each person. Based on evidence from this and other HIV

cohorts [58,59], we square root transformed CD4 counts in the

multilevel regression analysis in order to attain normal distribu-

tion.

Plasma viral load, CD4 T-cell counts
HIV-1 RNA plasma viral load and CD4 counts were quantified

using the HIV-1 RNA 3.0 bDNA assay (BayerTM), and

FACScount (Beckton DickinsonTM) respectively according to the

manufacturer’s protocols. The threshold for RNA detection was

50 copies/ml. All plasma viral loads are presented as log10

transformed data. Four digit high resolution Characterisation of

the infecting viral subtype was based on the Gag sequences as

described below.

HLA typing
HLA tissue typing was initially performed at low/medium

resolution using in-house polymerase chain reaction-sequence

specific primers (PCR-SSP). High resolution HLA class I typing

was perfomed by PCR using reference strand conformational

analysis (RSCA) as previously described [60]. Briefly, locus specific

primers were used to amplify HLA-A,-B and -C loci using

PCR.The PCR product were hybridised to fluorescently labelled

refrence strands (FLR’s) to form heteroduplexes. These heterodu-

plexes were run on a non-denaturing polyacrylamide gel with a

laser based fluorescence detection system. Heteroduplex mobility

values differed depending on the similarity of the PCR product

with the labelled reference strand. HLA types were assigned by

comparing the obtained mobility values with known values for

different alleles.

Sequencing of the HIV Gag region
RNA, extracted from either plasma or serum, was subjected to

reverse transcription and PCR (RT-PCR), and an approximately

720 bp region of the gag gene encompassing the p17/p24 junction

was amplified by nested PCR [61]. PCR products were then

sequenced on an ABI 377 automated sequencer according to

manufacturer’s instructions (ABI, Warrington, UK). Sequences

thus obtained were aligned with homologous regions from

reference viral strains obtained from the Los Alamos Database

(http://hiv-web.lanl.gov), using the BioEdit package (http://www.mbio.

ncsu.edu). Neighborhood joining phylogenetic trees were construct-

ed using the Treecon package [62], employing a Kimura distance

matrix. Each virus was assigned a subtype by comparison of its

sequence with reference strains. Sequences were also examined for

the presence of inter-subtype recombinants, which are common in

this population, by employing the Simplot programme as

described in [63] and http://www.welch.jhu.edu/,sray.

HIV peptides and preparation of pools
HIV peptides were obtained through the National Institute of

Health, AIDS Research and Reference Reagent programme

(https://www.aidsreagent.org/Index.cfm). The 20 amino acid peptides

with 10-amino acid overlaps between sequential peptides were

based on consensus sequences of clades A, B, C and D Gag protein

and Clade B Nef, Tat, Vif, Rev, Vpr, Vpu and Pol proteins. For

the Gag region only, we evaluated relationships between cross-

clade recognition and HIV disease progression.

ELISpot protocol
Peripheral blood mononuclear cells (PBMCs) were isolated from

whole-heparinised blood using Ficoll Histopaque (Sigma) density

gradient centrifugation. ELISpot assays were performed as

previously described [33,64] with some slight modifications.

Briefly, an ELISpot screening assay using matrices of 10 pooled

peptides was performed with each individual peptide appearing

twice in separate pools within the matrix. A PBMC specimen was

considered positive if it had a positive response in both matrix

pools that shared the peptide and this was subsequently confirmed

using individual peptides. Freshly isolated PBMCs were plated in

duplicate at 50,000–200,000 cells per well and incubated with
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peptide pools at a final concentration of 2 mg/ml per peptide for

16–18 hours at 37uC in a 5% CO2 atmosphere. Six negative

control wells (cells and media) as well as three positive control wells

(2 mg/ml PHA) were also included on the plate. Spots were

developed using the Vectastain Elite ABC kit and Vector Novared

substrate kit (Vector Laboratories Inc.) according to the manu-

facturer’s instructions. Spots were counted using a KS ELISpot

image analyser (Carl Zeiss), and were expressed as number of spot

forming units (SFU) per million input PBMCs. A test was regarded

as positive when the response was $50 SFU/106 PBMC and at

least twice the mean background (6 wells of cells and media)

response. All ELISpot data is presented herein as net response

after having subtracted all the background responses. All net

responses below 50 SFU/million PBMCs were assumed to equate

to zero response in all statistical analyses and graphical

representations

For each evaluated HIV Gag, Nef, Tat, Vif, Rev, Vpr, Vpu and

Pol protein, the frequency of HIV-specific IFN-c responders was

evaluated as the proportion of individuals within a stratification

group responding to that protein with induction of IFN-c.

Statistical Analysis
Participants were stratified according to HIV-1 disease

progression groups using a multilevel regression analysis model.

As the untransformed CD4 count data was not normally

distributed, medians and interquartile ranges were used for the

summary presentations. Plasma viral load data was log-trans-

formed in order to normalize it for subsequent analysis and was

analysed using unpaired the Students t-test. The Kruskal-Wallis

rank test was used to compare the median CD4 counts and IFN-c
responses between the groups. Spearman rank correlation

coefficients were used to demonstrate correlations between CD4

cell declines and HIV-induced T-cell responses. Categorical data

was compared using the two-tailed Fisher’s exact test. Ms Excel

and Graph Pad 4.0 were used for all the graphical presentations.

All analyses were performed using Stata v 9.0 (Stata Corp, Texas).
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