2,423 research outputs found

    Dexamethasone induces apoptosis in pulmonary arterial smooth muscle cells

    Get PDF
    BACKGROUND: Dexamethasone suppressed inflammation and haemodynamic changes in an animal model of pulmonary arterial hypertension (PAH). A major target for dexamethasone actions is NF-κB, which is activated in pulmonary vascular cells and perivascular inflammatory cells in PAH. Reverse remodelling is an important concept in PAH disease therapy, and further to its anti-proliferative effects, we sought to explore whether dexamethasone augments pulmonary arterial smooth muscle cell (PASMC) apoptosis. METHODS: Analysis of apoptosis markers (caspase 3, in-situ DNA fragmentation) and NF-κB (p65 and phospho-IKK-α/β) activation was performed on lung tissue from rats with monocrotaline (MCT)-induced pulmonary hypertension (PH), before and after day 14–28 treatment with dexamethasone (5 mg/kg/day). PASMC were cultured from this rat PH model and from normal human lung following lung cancer surgery. Following stimulation with TNF-α (10 ng/ml), the effects of dexamethasone (10(−8)–10(−6) M) and IKK2 (NF-κB) inhibition (AS602868, 0–3 μM (0-3×10(−6) M) on IL-6 and CXCL8 release and apoptosis was determined by ELISA and by Hoechst staining. NF-κB activation was measured by TransAm assay. RESULTS: Dexamethasone treatment of rats with MCT-induced PH in vivo led to PASMC apoptosis as displayed by increased caspase 3 expression and DNA fragmentation. A similar effect was seen in vitro using TNF-α-simulated human and rat PASMC following both dexamethasone and IKK2 inhibition. Increased apoptosis was associated with a reduction in NF-κB activation and in IL-6 and CXCL8 release from PASMC. CONCLUSIONS: Dexamethasone exerted reverse-remodelling effects by augmenting apoptosis and reversing inflammation in PASMC possibly via inhibition of NF-κB. Future PAH therapies may involve targeting these important inflammatory pathways

    Detecting rare functional variants using a wavelet-based test on quantitative and qualitative traits

    Get PDF
    We conducted a genome-wide association study on the Genetic Analysis Workshop 17 simulated unrelated individuals data using a multilocus score test based on wavelet transformation that we proposed recently. Wavelet transformation is an advanced smoothing technique, whereas the currently popular collapsing methods are the simplest way to smooth multilocus genotypes. The wavelet-based test suppresses noise from the data more effectively, which results in lower type I error rates. We chose a level-dependent threshold for the wavelet-based test to suppress the optimal amount of noise according to the data. We propose several remedies to reduce the inflated type I error rate: using a window of fixed size rather than a gene; using the Bonferroni correction rather than comparing to the maxima of test values for multiple testing corrections; and removing the influence of other factors by using residuals for the association test. A wavelet-based test can detect multiple rare functional variants. Type I error rates can be controlled using the wavelet-based test combined with the mentioned remedies

    Late summer transition from a free-tropospheric to boundary layer source of Aitken mode aerosol in the high Arctic

    Get PDF
    In the Arctic, the aerosol budget plays a particular role in determining the behaviour of clouds, which are important for the surface energy balance and thus for the region’s climate. A key question is the extent to which cloud condensation nuclei in the high Arctic summertime boundary layer are controlled by local emission and formation processes as opposed to transport from outside. Each of these sources is likely to respond differently to future changes in ice cover. Here we use a global model and observations from ship and aircraft field campaigns to understand the source of high Arctic aerosol in late summer. We find that particles formed remotely, i.e. at lower latitudes, outside the Arctic, are the dominant source of boundary layer Aitken mode particles during the sea ice melt period up to the end of August. Particles from such remote sources, entrained into the boundary layer from the free troposphere, account for nucleation and Aitken mode particle concentrations that are otherwise underestimated by the model. This source from outside the high Arctic declines as photochemical rates decrease towards the end of summer, and is largely replaced by local new particle formation driven by iodic acid emitted from the surface and associated with freeze-up. Such a local source is consistent with strong fluctuations in nucleation mode concentrations that occur in September. Our results suggest a high-Arctic aerosol regime shift in late summer, and only after this shift do cloud condensation nuclei become sensitive to local aerosol processes

    Phase-field approach to heterogeneous nucleation

    Full text link
    We consider the problem of heterogeneous nucleation and growth. The system is described by a phase field model in which the temperature is included through thermal noise. We show that this phase field approach is suitable to describe homogeneous as well as heterogeneous nucleation starting from several general hypotheses. Thus we can investigate the influence of grain boundaries, localized impurities, or any general kind of imperfections in a systematic way. We also put forward the applicability of our model to study other physical situations such as island formation, amorphous crystallization, or recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical Review

    IL28B genotype predicts response to chronic hepatitis C triple therapy with telaprevir or boceprevir in treatment naïve and treatment-experienced patients other than prior partial- and null-responders

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the IL28B gene were shown to have limited utility in predicting response to telaprevir and boceprevir in treatment of chronic HCV infection in clinical trials. Data outside of the clinical trial setting are lacking. We assessed the value of single and combined IL28B SNPs rs12979860 and rs8099917 genotypes in predicting sustained virological response 12 weeks after cessation of triple therapy (SVR12) with telaprevir or boceprevir in a single-centre cohort of treatment-naïve and treatment-experienced patients with genotype 1 HCV mono-infection (n = 105). The overall SVR12 rate was 65.7%. By unadjusted bivariate logistic regression analysis, rs12979860-CC and rs8099917-TT were significantly associated with SVR12 in the subgroup of patients including all naïve patients and all treatment-experienced patients with the exception of partial- and null-responders to previous HCV therapy. The predictive value of rs12979860-CC was stronger than rs8099917-TT and only rs12979860-CC remained significantly predictive of treatment success when the two variants were assessed by adjusted logistic regression analysis in the whole study cohort. In patients presenting the rs12979860-CC variant, the additional determination of rs8099917 genotype had no value. IL28B rs12979860-CC remained significantly associated with SVR12 also in the multivariate analysis including the other baseline characteristics associated to SVR12 in the bivariate analysis (i.e., female gender, HCV genotype 1b, baseline viral load <800,000 IU/mL, advanced liver fibrosis and prior partial- or null-response to HCV therapy). Our study suggests that testing for the IL28B rs12979860 genotype may still be useful in predicting response to triple therapy with boceprevir and telaprevir in naïve patients and treatment-experienced patients other than partial and null-responders

    Structured feedback on students’ concept maps: the proverbial path to learning?

    Get PDF
    Good conceptual knowledge is an essential requirement for health professions students, in that they are required to apply concepts learned in the classroom to a variety of different contexts. However, the use of traditional methods of assessment limits the educator’s ability to correct students’ conceptual knowledge prior to altering the educational context. Concept mapping (CM) is an educational tool for evaluating conceptual knowledge, but little is known about its use in facilitating the development of richer knowledge frameworks. In addition, structured feedback has the potential to develop good conceptual knowledge. The purpose of this study was to use Kinchin’s criteria to assess the impact of structured feedback on the graphical complexity of CM’s by observing the development of richer knowledge frameworks. Fifty-eight physiotherapy students created CM’s targeting the integration of two knowledge domains within a case-based teaching paradigm. Each student received one round of structured feedback that addressed correction, reinforcement, forensic diagnosis, benchmarking, and longitudinal development on their CM’s prior to the final submission. The concept maps were categorized according to Kinchin’s criteria as either Spoke, Chain or Net representations, and then evaluated against defined traits of meaningful learning. The inter-rater reliability of categorizing CM’s was good. Pre-feedback CM’s were predominantly Chain structures (57%), with Net structures appearing least often. There was a significant reduction of the basic Spoke- structured CMs (P = 0.002) and a significant increase of Net-structured maps (P < 0.001) at the final evaluation (post-feedback). Changes in structural complexity of CMs appeared to be indicative of broader knowledge frameworks as assessed against the meaningful learning traits. Feedback on CM’s seemed to have contributed towards improving conceptual knowledge and correcting naive conceptions of related knowledge. Educators in medical education could therefore consider using CM’s to target individual student development
    corecore