21 research outputs found

    Cyanide Production by Chromobacterium piscinae Shields It from Bdellovibrio bacteriovorus HD100 Predation

    Get PDF
    Predation of Chromobacterium piscinae by Bdellovibrio bacteriovorus HD100 was inhibited in dilute nutrient broth (DNB) but not in HEPES. Experiments showed that the effector responsible was present in the medium, as cell-free supernatants retained the ability to inhibit predation, and that the effector was not toxic to B. bacteriovorus. Violacein, a bisindole secondary metabolite produced by C. piscinae, was not responsible. Further characterization of C. piscinae found that this species produces sufficient concentrations of cyanide (202 mu M) when grown in DNB to inhibit the predatory activity of B. bacteriovorus, but that in HEPES, the cyanide concentrations were negligible (19 mu M). The antagonistic role of cyanide was further confirmed, as the addition of hydroxocobalamin, which chelates cyanide, allowed predation to proceed. The activity of cyanide against B. bacteriovorus was found to be twofold, depending on the life cycle stage of this predator. For the attack-phase predatory cells, cyanide caused the cells to lose motility and tumble, while for intra-periplasmic predators, development and lysis of the prey cell were halted. These findings suggest that cyanogenesis in nature may be employed by the bacterial strains that produce this compound to prevent and reduce their predation by B. bacteriovorus. IMPORTANCE Bacterial predators actively attack, kill, and enter the periplasm of susceptible Gram-negative bacteria, where they consume the prey cell components. To date, the activity of B. bacteriovorus HD100 has been demonstrated against more than 100 human pathogens. As such, this strain and others are being considered as potential alternatives or supplements to conventional antibiotics. However, the production of secondary metabolites by prey bacteria is known to mitigate, and even abolish, predation by bacterivorous nematodes and protists. With the exception of indole, which was shown to inhibit predation, the effects of bacterial secondary metabolites on B. bacteriovorus and its activities have not been considered. Consequently, we undertook this study to better understand the mechanisms that bacterial strains employ to inhibit predation by B. bacteriovorus HD100. We report here that cyanogenic bacterial strains can inhibit predation and show that cyanide affects both attack-phase predators and those within prey, i.e., in the bdelloplast

    Epithelial dysregulation in obese severe asthmatics with gastro-oesophageal reflux

    Get PDF

    Birth, growth and computation of pi to ten trillion digits

    Get PDF

    Number Theory

    No full text

    A Dry Powder Formulation of Liposome-Encapsulated Recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) for Inhalation: Preparation and Characterisation

    No full text
    Inhaled recombinant secretory leukocyte protease inhibitor (rSLPI) has shown potential for the treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs has limited clinical efficacy to date. Previous studies by us have shown that encapsulation of rSLPI within1,2-dioleoyl-sn-glycero-3-[phospho-L-serine]/cholesterol (DOPS/Chol) liposomes protects rSLPI against Cat L inactivation in vitro. Liquid DOPS–rSLPI preparations were found to be unstable upon long-term storage and nebulisation. The aim of this study was therefore to develop a method of manufacture for preparing DOPS–rSLPI liposomes as a dry powder for inhalation. DOPS–rSLPI dry powders were lyophilised and subsequently micronised with a novel micronisation aid. The effects of formulation and processing on rSLPI stability, activity, and uniformity of content within the powders were characterised. Using D-mannitol as the micronisation aid, dry powder particles in the inhalable size range (<5 Όm) were prepared. By optimising process parameters, up to 54% of rSLPI was recovered after micronisation, of which there was no significant loss in anti-neutrophil elastase activity and no detectable evidence of protein degradation. Aerosolisation was achieved using a dry powder inhaler, and mass median aerodynamic diameter (MMAD) was evaluated after collection in a cascade impactor. Aerosolisation of the DOPS–rSLPI dry powder yielded 38% emitted dose, with 2.44 Όm MMAD. When challenged with Cat L post-aerosolisation, DOPS–rSLPI dry powder was significantly better at retaining a protective function against Cat L-induced rSLPI inactivation compared to the aqueous DOPS–rSLPI liposome dispersion and was also more stable under storage

    Modeling Nosocomial Infections of Methicillin-Resistant Staphylococcus aureus with Environment Contamination*

    No full text
    In this work, we investigate the role of environmental contamination on the clinical epidemiology of antibiotic-resistant bacteria in hospitals. Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium that causes infections in different parts of the body. It is tougher to treat than most strains of Staphylococcus aureus or staph, because it is resistant to some commonly used antibiotics. Both deterministic and stochastic models are constructed to describe the transmission characteristics of MRSA in hospital setting. The deterministic epidemic model includes five compartments: colonized and uncolonized patients, contaminated and uncontaminated health care workers (HCWs), and bacterial load in environment. The basic reproduction number R is calculated, and its numerical and sensitivity analysis has been performed to study the asymptotic behavior of the model, and to help identify factors responsible for observed patterns of infections. A stochastic epidemic model with stochastic simulations is also presented to supply a comprehensive analysis of its behavior. Data collected from Beijing Tongren Hospital will be used in the numerical simulations of our model. The results can be used to provide theoretical guidance for designing efficient control measures, such as increasing the hand hygiene compliance of HCWs and disinfection rate of environment, and decreasing the transmission rate between environment and patients and HCWs
    corecore