20 research outputs found

    Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine

    Full text link
    The present study examines the effect of silicon dioxide (SiO2) nano-additives on the performance and emission characteristics of a diesel engine fuelled with soybean biodiesel. Soybean biofuel was prepared using the transesterification process. The morphology of nano-additives was studied using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The Ultrasonication process was used for the homogeneous blending of nano-additives with biodiesel, while surfactant was used for the stabilisation of nano-additives. The physicochemical properties of pure and blended fuel samples were measured as per ASTM standards. The performance and emissions characteristics of different fuel samples were measured at different loading conditions. It was found that the brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) increased by 3.48–6.39% and 5.81–9.88%, respectively, with the addition of SiO2 nano-additives. The carbon monoxide (CO), hydrocarbon (HC) and smoke emissions for nano-additive added blends were decreased by 1.9–17.5%, 20.56–27.5% and 10.16–23.54% compared to SBME25 fuel blends.</jats:p

    Potential of utilization of renewable energy technologies in gulf countries

    Full text link
    This critical review report highlights the enormous potentiality and availability of renewable energy sources in the Gulf region. The earth suffers from extreme air pollution, climate changes, and extreme problems due to the enormous usage of underground carbon resources applications materialized in industrial, transport, and domestic sectors. The countries under Gulf Cooperation Council, i.e., Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates, mainly explore those underground carbon resources for crude oil extraction and natural gas production. As a nonrenewable resource, these are bound to be exhausted in the near future. Hence, this review discusses the importance and feasibility of renewable sources in the Gulf region to persuade the sci-entific community to launch and explore renewable sources to obtain the maximum benefit in electric power generation. In most parts of the Gulf region, solar and wind energy sources are abundantly available. However, attempts to harness those resources are very limited. Furthermore, in this review report, innovative areas of advanced research (such as bioenergy, biomass) were proposed for the Gulf region to extract those resources at a higher magnitude to generate surplus power generation. Overall, this report clearly depicts the current scenario, current power demand, currently installed capacities, and the future strategies of power production from renewable power sources (viz., solar, wind, tidal, biomass, and bioenergy) in each and every part of the Gulf region

    Maximization of propylene in an industrial FCC unit

    Get PDF
    YesThe FCC riser cracks gas oil into useful fuels such as gasoline, diesel and some lighter products such as ethylene and propylene, which are major building blocks for the polyethylene and polypropylene production. The production objective of the riser is usually the maximization of gasoline and diesel, but it can also be to maximize propylene. The optimization and parameter estimation of a six-lumped catalytic cracking reaction of gas oil in FCC is carried out to maximize the yield of propylene using an optimisation framework developed in gPROMS software 5.0 by optimizing mass flow rates and temperatures of catalyst and gas oil. The optimal values of 290.8 kg/s mass flow rate of catalyst and 53.4 kg/s mass flow rate of gas oil were obtained as propylene yield is maximized to give 8.95 wt%. When compared with the base case simulation value of 4.59 wt% propylene yield, the maximized propylene yield is increased by 95%

    Model Based Analysis of a Petroleum Refinery Plant with Hydrotreating as a Pre-treatment Unit

    No full text
    Catalytic hydrotreating is one of the processes used intensively in the modern petroleum refining industry. It is series of reactions considered as a mature process that improves the quality of petroleum products and removes Sulphur and undesired impurities. This study aims to develop and enhance the performance of a whole petroleum refining plant, which follows the concept of crude oil hydrotreating (HDT). The study was carried out using Aspen HYSYS simulator building a model-based analysis for the refinery plant. Two refineries have been simulated separately; one with a crude oil hydrotreating and the other followed the conventional method. The comparison and analysis focused on enhancing the yield of middle distillates while reducing the total energy consumption and overall costs. Hydrodenitrogenation and Hydrodesulfurization were the two reactions that took place in the trickle bed reactor at 400 °C and 10 MPa. The hydrotreated crude oil enters then the atmospheric distillation column, where six main products were distilled (LPG, Light Naphtha, Heavy Naphtha, Kerosene and Residual crude). In the model-based analysis, the crude HDT process configuration was completed first using Kirkuk crude oil, and to confirm the significance of the study, Siberian crude was used as an alternative feedstock. Finally, the results confirmed that the crude oil hydrotreating method can be followed using different types of feedstock around the world

    Enhancement in combustion, performance, and emission characteristics of a diesel engine fueled with Ce-ZnO nanoparticle additive added to soybean biodiesel blends

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). This study considered the impacts of diesel-soybean biodiesel blends mixed with 3% cerium coated zinc oxide (Ce-ZnO) nanoparticles on the performance, emission, and combustion characteristics of a single cylinder diesel engine. The fuel blends were prepared using 25% soybean biodiesel in diesel (SBME25). Ce-ZnO nanoparticle additives were blended with SBME25 at 25, 50, and 75 ppm using the ultrasonication process with a surfactant (Span 80) at 2 vol.% to enhance the stability of the blend. A variable compression ratio engine operated at a 19.5:1 compression ratio (CR) using these blends resulted in an improvement in overall engine characteristics. With 50 ppm Ce-ZnO nanoparticle additive in SBME25 (SBME25Ce-ZnO50), the brake thermal efficiency (BTE) and heat release rate (HRR) increased by 20.66% and 18.1%, respectively; brake specific fuel consumption (BSFC) by 21.81%; and the CO, smoke, and hydrocarbon (HC) decreased by 30%, 18.7%, and 21.5%, respectively, compared to SBME25 fuel operation. However, the oxides of nitrogen slightly rose for all the nanoparticle added blends. As such, 50 ppm of Ce-ZnO nanoparticle in the blend is a potent choice for the enhancement of engine performance, combustion, and emission characteristics
    corecore