30 research outputs found

    Survival of adult neurons lacking cholesterol synthesis in vivo

    Get PDF
    BACKGROUND: Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. RESULTS: Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. CONCLUSION: We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system

    Purkinje cell input to cerebellar nuclei in tottering: Ultrastructure and physiology

    Get PDF
    Homozygous tottering mice are spontaneous ataxic mutants, which carry a mutation in the gene encoding the ion pore of the P/Q-type voltage-gated calcium channels. P/Q-type calcium channels are prominently expressed in Purkinje cell terminals, but it is unknown to what extent these inhibitory terminals in tottering mice are affected at the morphological and electrophysiological level. Here, we investigated the distribution and ultrastructure of their Purkinje cell terminals in the cerebellar nuclei as well as the activities of their target neurons. The densities of Purkinje cell terminals and their synapses were not significantly affected in the mutants. However, the Purkinje cell terminals were enlarged and had an increased number of vacuoles, whorled bodies, and mitochondria. These differences started to occur between 3 and 5 weeks of age and persisted throughout adulthood. Stimulation of Purkinje cells in adult tottering mice resulted in inhibition at normal latencies, but the activities of their postsynaptic neurons in the cerebellar nuclei were abnormal in that the frequency and irregularity of their spiking patterns were enhanced. Thus, although the number of their terminals and their synaptic contacts appear quantitatively intact, Purkinje cells in tottering mice show several signs of axonal damage that may contribute to altered postsynaptic activities in the cerebellar nuclei

    The Ataxic Cacna1a-Mutant Mouse Rolling Nagoya: An Overview of Neuromorphological and Electrophysiological Findings

    Get PDF
    Homozygous rolling Nagoya natural mutant mice display a severe ataxic gait and frequently roll over to their side or back. The causative mutation resides in the Cacna1a gene, encoding the pore-forming α1 subunit of Cav2.1 type voltage-gated Ca2+ channels. These channels are crucially involved in neuronal Ca2+ signaling and in neurotransmitter release at many central synapses and, in the periphery, at the neuromuscular junction. We here review the behavioral, histological, biochemical, and neurophysiological studies on this mouse mutant and discuss its usefulness as a model of human neurological diseases associated with Cav2.1 dysfunction

    Animal Models of Human Cerebellar Ataxias: a Cornerstone for the Therapies of the Twenty-First Century

    Full text link

    Growth patterns for acervuli in human pineal gland

    No full text
    Acervuli are calcified concretions in the pineal gland (PG). Particularly interesting are their incidence and size, which are believed to affect neurological disorders and many physiological functions of PG such as regulating circadian rhythm. Despite long investigations for a century, detailed growth mechanism of acervuli has yet to be studied. Here we study the growth morphology of acervuli in human PGs by a direct visualization in 3-dimension (3-D) using a synchrotron X-ray imaging method. For an entire PG, non-aggregated acervuli show Gaussian distribution in size with 47 +/- 28 mu m. The 3-D volume rendered images of acervuli reveal that the bumpy surfaces developed by lamination result in the mulberry-like structure. In addition, coalescence of multiple acervuli leads to large-scale lamination on the whole aggregate. We suggest a novel hypothesis on the growth patterns of acervuli by their nucleation density (N-d): i) mulberry-like structure at low N-d, and ii) large-scale lamination on an aggregate at high N-d.open114sciescopu

    Differences between brain mass and body weight scaling to height: potential mechanism of reduced mass-specific resting energy expenditure of taller adults.

    No full text
    Adult resting energy expenditure (REE) scales as height( approximately 1.5), whereas body weight (BW) scales as height( approximately 2). Mass-specific REE (i.e., REE/BW) is thus lower in tall subjects compared with their shorter counterparts, the mechanism of which is unknown. We evaluated the hypothesis that high-metabolic-rate brain mass scales to height with a power significantly less than that of BW, a theory that if valid would provide a potential mechanism for height-related REE effects. The hypothesis was tested by measuring brain mass on a large (n = 372) postmortem sample of Thai men. Since brain mass-body size relations may be influenced by age, the hypothesis was secondarily explored in Thai men age or =20<30 yr. The scaling of large body compartments was examined in a third group of Asian men living in New York (NY, n = 28) with MRI and dual-energy X-ray absorptiometry. Brain mass scaled to height with a power (mean +/- SEE; 0.46 +/- 0.13) significantly smaller (P < 0.001) than that of BW scaled to height (2.36 +/- 0.19) in the whole group of Thai men; brain mass/BW scaled negatively to height (-1.94 +/- 0.20, P < 0.001). Similar results were observed in younger Thai men, and results for brain mass/BW vs. height were directionally the same (P = 0.09) in Korean men. Skeletal muscle and bone scaled to height with powers similar to that of BW (i.e., approximately 2-3) in the NY Asian men. Models developed using REE estimates in Thai men suggest that brain accounts for most of the REE/BW height dependency. Tall and short men thus differ in relative brain mass, but the proportions of BW as large compartments appear independent of height, observations that provide a potential mechanistic basis for related differences in REE and that have implications for the study of adult energy requirement
    corecore