61 research outputs found

    Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents

    Full text link
    We present a theory which explains how to achieve an enhancement of nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic structure specially designed to bear a trapped-mode resonant regime. In particular, the possibility of a nonlinear thin metamaterial to produce the bistable response at a relatively low input intensity due to a large quality factor of the trapped-mode resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based planar metamaterial which can provide an extremely sharp resonant reflection and transmission is proposed. The designed metamaterial is envisioned for aggregating with a pumped active medium to achieve an enhancement of quantum dots luminescence and to produce an all-dielectric analog of a 'lasing spaser'.Comment: 18 pages, 13 figure

    A blueprint for a simultaneous test of quantum mechanics and general relativity in a space-based quantum optics experiment

    Get PDF
    In this paper we propose an experiment designed to observe a general-relativistic effect on single photon interference. The experiment consists of a folded Mach-Zehnder interferometer, with the arms distributed between a single Earth orbiter and a ground station. By compensating for other degrees of freedom and the motion of the orbiter, this setup aims to detect the influence of general relativistic time dilation on a spatially superposed single photon. The proposal details a payload to measure the required effect, along with an extensive feasibility analysis given current technological capabilities

    Design of a high-performance optical tweezer for nanoparticle trapping

    Get PDF
    Integrated optical nanotweezers offer a novel paradigm for optical trapping, as their ability to confine light at the nanoscale leads to extremely high gradient forces. To date, nanotweezers have been realized either as photonic crystal or as plasmonic nanocavities. Here, we propose a nanotweezer device based on a hybrid photonic/plasmonic cavity with the goal of achieving a very high quality factor-to-mode volume (Q/V) ratio. The structure includes a 1D photonic crystal dielectric cavity vertically coupled to a bowtie nanoantenna. A very high Q/V ~ 107 (λ/n)−3 with a resonance transmission T = 29 % at λR = 1381.1 nm has been calculated by 3D finite element method, affording strong light–matter interaction and making the hybrid cavity suitable for optical trapping. A maximum optical force F = −4.4 pN, high values of stability S = 30 and optical stiffness k = 90 pN/nm W have been obtained with an input power Pin = 1 mW, for a polystyrene nanoparticle with a diameter of 40 nm. This performance confirms the high efficiency of the optical nanotweezer and its potential for trapping living matter at the nanoscale, such as viruses, proteins and small bacteria

    Silica (Fused)

    No full text

    Tunable third-order dispersion of a prismatic pulse compressor

    No full text
    • …
    corecore