102 research outputs found

    COPD-derived fibroblasts secrete higher levels of senescence-associated secretory phenotype proteins.

    Full text link
    COPD-derived fibroblasts have increased cellular senescence. Senescent cell accumulation can induce tissue dysfunction by their senescence-associated secretory phenotype (SASP). We aimed to determine the SASP of senescent fibroblasts and COPD-derived lung fibroblasts, including severe, early-onset (SEO)-COPD. SASP protein secretion was measured after paraquat-induced senescence in lung fibroblasts using Olink Proteomics and compared between (SEO-)COPD-derived and control-derived fibroblasts. We identified 124 SASP proteins of senescent lung fibroblasts, of which 42 were secreted at higher levels by COPD-derived fibroblasts and 35 by SEO-COPD-derived fibroblasts compared with controls. Interestingly, the (SEO-)COPD-associated SASP included proteins involved in chronic inflammation, which may contribute to (SEO-)COPD pathogenesis

    Gene network approach reveals co-expression patterns in nasal and bronchial epithelium

    Get PDF
    © 2019, The Author(s). Nasal gene expression profiling is a new approach to investigate the airway epithelium as a biomarker to study the activity and treatment responses of obstructive pulmonary diseases. We investigated to what extent gene expression profiling of nasal brushings is similar to that of bronchial brushings. We performed genome wide gene expression profiling on matched nasal and bronchial epithelial brushes from 77 respiratory healthy individuals. To investigate differences and similarities among regulatory modules, network analysis was performed on correlated, differentially expressed and smoking-related genes using Gaussian Graphical Models. Between nasal and bronchial brushes, 619 genes were correlated and 1692 genes were differentially expressed (false discovery rate 2). Network analysis of correlated genes showed pro-inflammatory pathways to be similar between the two locations. Focusing on smoking-related genes, cytochrome-P450 pathway related genes were found to be similar, supporting the concept of a detoxifying response to tobacco exposure throughout the airways. In contrast, cilia-related pathways were decreased in nasal compared to bronchial brushes when focusing on differentially expressed genes. Collectively, while there are substantial differences in gene expression between nasal and bronchial brushes, we also found similarities, especially in the response to the external factors such as smoking

    ERS International Congress, Madrid, 2019: highlights from the Basic and Translational Science Assembly.

    Full text link
    In this review, the Basic and Translational Sciences Assembly of the European Respiratory Society (ERS) provides an overview of the 2019 ERS International Congress highlights. In particular, we discuss how the novel and very promising technology of single cell sequencing has led to the development of a comprehensive map of the human lung, the lung cell atlas, including the discovery of novel cell types and new insights into cellular trajectories in lung health and disease. Further, we summarise recent insights in the field of respiratory infections, which can aid in a better understanding of the molecular mechanisms underlying these infections in order to develop novel vaccines and improved treatment options. Novel concepts delineating the early origins of lung disease are focused on the effects of pre- and post-natal exposures on neonatal lung development and long-term lung health. Moreover, we discuss how these early life exposures can affect the lung microbiome and respiratory infections. In addition, the importance of metabolomics and mitochondrial function analysis to subphenotype chronic lung disease patients according to their metabolic program is described. Finally, basic and translational respiratory science is rapidly moving forward and this will be beneficial for an advanced molecular understanding of the mechanisms underlying a variety of lung diseases. In the long-term this will aid in the development of novel therapeutic targeting strategies in the field of respiratory medicine

    Mouse Protocadherin-1 gene expression is regulated by cigarette smoke exposure in vivo

    Get PDF
    Protocadherin-1 (PCDH1) is a novel susceptibility gene for airway hyperresponsiveness, first identified in families exposed to cigarette smoke and is expressed in bronchial epithelial cells. Here, we asked how mouse Pcdh1 expression is regulated in lung structural cells in vivo under physiological conditions, and in both short-term cigarette smoke exposure models characterized by airway inflammation and hyperresponsiveness and chronic cigarette smoke exposure models. Pcdh1 gene-structure was investigated by Rapid Amplification of cDNA Ends. Pcdh1 mRNA and protein expression was investigated by qRT-PCR, western blotting using isoform-specific antibodies. We observed 87% conservation of the Pcdh1 nucleotide sequence, and 96% conservation of the Pcdh1 protein sequence between men and mice. We identified a novel Pcdh1 isoform encoding only the intracellular signalling motifs. Cigarette smoke exposure for 4 consecutive days markedly reduced Pcdh1 mRNA expression in lung tissue (3 to 4-fold), while neutrophilia and airway hyperresponsiveness was induced. Moreover, Pcdh1 mRNA expression in lung tissue was reduced already 6 hours after an acute cigarette-smoke exposure in mice. Chronic exposure to cigarette smoke induced loss of Pcdh1 protein in lung tissue after 2 months, while Pcdh1 protein levels were no longer reduced after 9 months of cigarette smoke exposure. We conclude that Pcdh1 is highly homologous to human PCDH1, encodes two transmembrane proteins and one intracellular protein, and is regulated by cigarette smoke exposure in vivo

    Nasal gene expression differentiates COPD from controls and overlaps bronchial gene expression

    Full text link
    © 2017 The Author(s). Background: Nasal gene expression profiling is a promising method to characterize COPD non-invasively. We aimed to identify a nasal gene expression profile to distinguish COPD patients from healthy controls. We investigated whether this COPD-associated gene expression profile in nasal epithelium is comparable with the profile observed in bronchial epithelium. Methods: Genome wide gene expression analysis was performed on nasal epithelial brushes of 31 severe COPD patients and 22 controls, all current smokers, using Affymetrix Human Gene 1.0 ST Arrays. We repeated the gene expression analysis on bronchial epithelial brushes in 2 independent cohorts of mild-to-moderate COPD patients and controls. Results: In nasal epithelium, 135 genes were significantly differentially expressed between severe COPD patients and controls, 21 being up- and 114 downregulated in COPD (false discovery rate < 0.01). Gene Set Enrichment Analysis (GSEA) showed significant concordant enrichment of COPD-associated nasal and bronchial gene expression in both independent cohorts (FDRGSEA < 0.001). Conclusion: We identified a nasal gene expression profile that differentiates severe COPD patients from controls. Of interest, part of the nasal gene expression changes in COPD mimics differentially expressed genes in the bronchus. These findings indicate that nasal gene expression profiling is potentially useful as a non-invasive biomarker in COPD. Trial registration:ClinicalTrials.govregistration number NCT01351792(registration date May 10, 2011), ClinicalTrials.govregistration number NCT00848406(registration date February 19, 2009), ClinicalTrials.govregistration number NCT00807469(registration date December 11, 2008)

    Role of aberrant metalloproteinase activity in the pro-inflammatory phenotype of bronchial epithelium in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoke, the major risk factor for COPD, is known to activate matrix metalloproteinases in airway epithelium. We investigated whether metalloproteinases, particularly A Disintegrin and Metalloproteinase (ADAM)17, contribute to increased pro-inflammatory epithelial responses with respect to the release of IL-8 and TGF-α, cytokines implicated in COPD pathogenesis.</p> <p>Methods</p> <p>We studied the effects of cigarette smoke extract (CSE) and metalloproteinase inhibitors on TGF-α and IL-8 release in primary bronchial epithelial cells (PBECs) from COPD patients, healthy smokers and non-smokers.</p> <p>Results</p> <p>We observed that TGF-α was mainly shed by ADAM17 in PBECs from all groups. Interestingly, IL-8 production occurred independently from ADAM17 and TGF-α shedding, but was significantly inhibited by broad-spectrum metalloproteinase inhibitor TAPI-2. CSE did not induce ADAM17-dependent TGF-α shedding, while it slightly augmented the production of IL-8. This was accompanied by reduced endogenous inhibitor of metalloproteinase (TIMP)-3 levels, suggesting that CSE does not directly but rather indirectly alter activity of ADAM17 through the regulation of its endogenous inhibitor. Furthermore, whereas baseline TGF-α shedding was lower in COPD PBECs, the early release of IL-8 (likely due to its shedding) was higher in PBECs from COPD than healthy smokers. Importantly, this was accompanied by lower TIMP-2 levels in COPD PBECs, while baseline TIMP-3 levels were similar between groups.</p> <p>Conclusions</p> <p>Our data indicate that IL-8 secretion is regulated independently from ADAM17 activity and TGF-α shedding and that particularly its early release is differentially regulated in PBECs from COPD and healthy smokers. Since TIMP-2-sensitive metalloproteinases could potentially contribute to IL-8 release, these may be interesting targets to further investigate novel therapeutic strategies in COPD.</p

    Downregulation of Integrin β4 Decreases the Ability of Airway Epithelial Cells to Present Antigens

    Get PDF
    Airway epithelial cells have been demonstrated to be accessory antigen presentation cells (APC) capable of activating T cells and may play an important role in the development of allergic airway inflammation of asthma. In asthmatic airways, loss of expression of the adhesion molecule integrin β4 (ITGB4) and an increase in Th2 inflammation bias has been observed in our previous study. Given that ITGB4 is engaged in multiple signaling pathways, we studied whether disruption of ITGB4-mediated cell adhesion may contribute to the adaptive immune response of epithelial cells, including their ability to present antigens, induce the activate and differentiate of T cells. We silenced ITGB4 expression in bronchial epithelial cells with an effective siRNA vector and studied the effects of ITGB4 silencing on the antigen presentation ability of airway epithelial cells. T cell proliferation and cytokine production was investigated after co-culturing with ITGB4-silenced epithelial cells. Surface expression of B7 homologs and the major histocompatibility complex (MHC) class II was also detected after ITGB4 was silenced. Our results demonstrated that silencing of ITGB4 resulted in impaired antigen presentation processes and suppressed T cell proliferation. Meanwhile, decrease in Th1 cytokine production and increase in Th17 cytokine production was induced after co-culturing with ITGB4-silenced epithelial cells. Moreover, HLA-DR was decreased and the B7 homologs expression was different after ITGB4 silencing. Overall, this study suggested that downregulation of ITGB4 expression in airway epithelial cells could impair the antigen presentation ability of these cells, which further regulate airway inflammation reaction in allergic asthma

    Chronic Respiratory Aeroallergen Exposure in Mice Induces Epithelial-Mesenchymal Transition in the Large Airways

    Get PDF
    Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM) extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1) levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA) and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease

    IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx?

    Get PDF
    BACKGROUND: The role of Th2 cells (producing interleukin (IL-)4, IL-5 and IL-13) in allergic asthma is well-defined. A distinct proinflammatory T cell lineage has recently been identified, called Th(17 )cells, producing IL-17A, a cytokine that induces CXCL8 (IL-8) and recruits neutrophils. Neutrophilic infiltration in the airways is prominent in severe asthma exacerbations and may contribute to airway gland hypersecretion, bronchial hyper-reactivity and airway wall remodelling in asthma. AIM: to study the production of IL-17 in asthmatic airways at the mRNA level, and to correlate this with IL-8 mRNA, neutrophilic inflammation and asthma severity. METHODS: We obtained airway cells by sputum induction from healthy individuals (n = 15) and from asthmatic patients (n = 39). Neutrophils were counted on cytospins and IL-17A and IL-8 mRNA expression was quantified by real-time RT-PCR (n = 11 controls and 33 asthmatics). RESULTS: Sputum IL-17A and IL-8 mRNA levels are significantly elevated in asthma patients compared to healthy controls. IL-17 mRNA levels are significantly correlated with CD3γ mRNA levels in asthmatic patients and mRNA levels of IL-17A and IL-8 correlated with each other and with sputum neutrophil counts. High sputum IL-8 and IL-17A mRNA levels were also found in moderate-to-severe (persistent) asthmatics on inhaled steroid treatment. CONCLUSION: The data suggest that Th(17 )cell infiltration in asthmatic airways links T cell activity with neutrophilic inflammation in asthma
    corecore