51 research outputs found

    Gene network approach reveals co-expression patterns in nasal and bronchial epithelium

    Get PDF
    © 2019, The Author(s). Nasal gene expression profiling is a new approach to investigate the airway epithelium as a biomarker to study the activity and treatment responses of obstructive pulmonary diseases. We investigated to what extent gene expression profiling of nasal brushings is similar to that of bronchial brushings. We performed genome wide gene expression profiling on matched nasal and bronchial epithelial brushes from 77 respiratory healthy individuals. To investigate differences and similarities among regulatory modules, network analysis was performed on correlated, differentially expressed and smoking-related genes using Gaussian Graphical Models. Between nasal and bronchial brushes, 619 genes were correlated and 1692 genes were differentially expressed (false discovery rate 2). Network analysis of correlated genes showed pro-inflammatory pathways to be similar between the two locations. Focusing on smoking-related genes, cytochrome-P450 pathway related genes were found to be similar, supporting the concept of a detoxifying response to tobacco exposure throughout the airways. In contrast, cilia-related pathways were decreased in nasal compared to bronchial brushes when focusing on differentially expressed genes. Collectively, while there are substantial differences in gene expression between nasal and bronchial brushes, we also found similarities, especially in the response to the external factors such as smoking

    Nasal gene expression differentiates COPD from controls and overlaps bronchial gene expression

    Full text link
    © 2017 The Author(s). Background: Nasal gene expression profiling is a promising method to characterize COPD non-invasively. We aimed to identify a nasal gene expression profile to distinguish COPD patients from healthy controls. We investigated whether this COPD-associated gene expression profile in nasal epithelium is comparable with the profile observed in bronchial epithelium. Methods: Genome wide gene expression analysis was performed on nasal epithelial brushes of 31 severe COPD patients and 22 controls, all current smokers, using Affymetrix Human Gene 1.0 ST Arrays. We repeated the gene expression analysis on bronchial epithelial brushes in 2 independent cohorts of mild-to-moderate COPD patients and controls. Results: In nasal epithelium, 135 genes were significantly differentially expressed between severe COPD patients and controls, 21 being up- and 114 downregulated in COPD (false discovery rate < 0.01). Gene Set Enrichment Analysis (GSEA) showed significant concordant enrichment of COPD-associated nasal and bronchial gene expression in both independent cohorts (FDRGSEA < 0.001). Conclusion: We identified a nasal gene expression profile that differentiates severe COPD patients from controls. Of interest, part of the nasal gene expression changes in COPD mimics differentially expressed genes in the bronchus. These findings indicate that nasal gene expression profiling is potentially useful as a non-invasive biomarker in COPD. Trial registration:ClinicalTrials.govregistration number NCT01351792(registration date May 10, 2011), ClinicalTrials.govregistration number NCT00848406(registration date February 19, 2009), ClinicalTrials.govregistration number NCT00807469(registration date December 11, 2008)

    Evolutionary diversification of new caledonian Araucaria

    Get PDF
    New Caledonia is a global biodiversity hotspot. Hypotheses for its biotic richness suggest either that the island is a ‘museum’ for an old Gondwana biota or alternatively it has developed following relatively recent long distance dispersal and in situ radiation. The conifer genus Araucaria (Araucariaceae) comprises 19 species globally with 13 endemic to this island. With a typically Gondwanan distribution, Araucaria is particularly well suited to testing alternative biogeographic hypotheses concerning the origins of New Caledonian biota. We derived phylogenetic estimates using 11 plastid and rDNA ITS2 sequence data for a complete sampling of Araucaria (including multiple accessions of each of the 13 New Caledonian Araucaria species). In addition, we developed a dataset comprising 4 plastid regions for a wider taxon sample to facilitate fossil based molecular dating. Following statistical analyses to identify a credible and internally consistent set of fossil constraints, divergence times estimated using a Bayesian relaxed clock approach were contrasted with geological scenarios to explore the biogeographic history of Araucaria. The phylogenetic data resolve relationships within Araucariaceae and among the main lineages in Araucaria, but provide limited resolution within the monophyletic New Caledonian species group. Divergence time estimates suggest a Late Cretaceous-Cenozoic radiation of extant Araucaria and a Neogene radiation of the New Caledonian lineage. A molecular timescale for the evolution of Araucariaceae supports a relatively recent radiation, and suggests that earlier (pre-Cenozoic) fossil types assigned to Araucaria may have affinities elsewhere in Araucariaceae. While additional data will be required to adequately resolve relationships among the New Caledonian species, their recent origin is consistent with overwater dispersal following Eocene emersion of New Caledonia but is too old to support a single dispersal from Australia to Norfolk Island for the radiation of the Pacific Araucaria sect. Eutacta clade.Mai Lan Kranitz, Edward Biffin, Alexandra Clark, Michelle L. Hollingsworth, Markus Ruhsam, Martin F. Gardner, Philip Thomas, Robert R. Mill, Richard A. Ennos, Myriam Gaudeul, Andrew J. Lowe, Peter M. Hollingswort

    Identifying a nasal gene expression signature associated with hyperinflation and treatment response in severe COPD.

    Full text link
    Hyperinflation contributes to dyspnea intensity in COPD. Little is known about the molecular mechanisms underlying hyperinflation and how inhaled corticosteroids (ICS) affect this important aspect of COPD pathophysiology. To investigate the effect of ICS/long-acting β2-agonist (LABA) treatment on both lung function measures of hyperinflation, and the nasal epithelial gene-expression profile in severe COPD. 117 patients were screened and 60 COPD patients entered a 1-month run-in period on low-dose ICS/LABA budesonide/formoterol (BUD/F) 200/6 one inhalation b.i.d. Patients were then randomly assigned to 3-month treatment with either a high dose BDP/F 100/6 two inhalations b.i.d. (n = 31) or BUD/F 200/6 two inhalations b.i.d. (n = 29). Lung function measurements and nasal epithelial gene-expression were assessed before and after 3-month treatment and validated in independent datasets. After 3-month ICS/LABA treatment, residual volume (RV)/total lung capacity (TLC)% predicted was reduced compared to baseline (p < 0.05). We identified a nasal gene-expression signature at screening that associated with higher RV/TLC% predicted values. This signature, decreased by ICS/LABA treatment was enriched for genes associated with increased p53 mediated apoptosis was replicated in bronchial biopsies of COPD patients. Finally, this signature was increased in COPD patients compared to controls in nasal, bronchial and small airways brushings. Short-term ICS/LABA treatment improves RV/TLC% predicted in severe COPD. Furthermore, it decreases the expression of genes involved in the signal transduction by the p53 class mediator, which is a replicable COPD gene expression signature in the upper and lower airways.Trial registration: ClinicalTrials.gov registration number NCT01351792 (registration date May 11, 2011), ClinicalTrials.gov registration number NCT00848406 (registration date February 20, 2009), ClinicalTrials.gov registration number NCT00158847 (registration date September 12, 2005)
    • …
    corecore