621 research outputs found

    THE SYNDROME OF PEUTZ

    Get PDF
    Click on the link to view

    Clinical Trial of a New Diuretic-Metindamide

    Get PDF
    A controlled clinical trial of metindamide (N-(3-sulphamoyl 1 - 4 chlorobenzamido) - 2 - methyl indoline), is reported. It was compared with furosemide in 15 normal subjects and 15 patients with cardiac oedema. Metindamide was found to be at least as effective as furosemide, and produced a greater water loss, but an equivalent electrolyte loss. It had a slow onset, and a fairly prolonged effect, making it a less aggressive drug than furosemide, and one which is suitable for maintenance therapy. In a smaller trial its effect as a hypotensive agent was demonstrated. The drug was well tolerated and side-effects were minimal.S. Afr. Med. J., 48, 546 (1974

    Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma

    Get PDF
    Muscle satellite cells (MuSCs) play a central role in muscle regeneration, but their quantity and function decline with comorbidity of trauma, aging, and muscle diseases. Although transplantation of MuSCs in traumatically injured muscle in the comorbid context of aging or pathology is a strategy to boost muscle regeneration, an effective cell delivery strategy in these contexts has not been developed. We engineered a synthetic hydrogel-based matrix with optimal mechanical, cell-adhesive, and protease-degradable properties that promotes MuSC survival, proliferation, and differentiation. Furthermore, we establish a biomaterial-mediated cell delivery strategy for treating muscle trauma, where intramuscular injections may not be applicable. Delivery of MuSCs in the engineered matrix significantly improved in vivo cell survival, proliferation, and engraftment in nonirradiated and immunocompetent muscles of aged and dystrophic mice compared to collagen gels and cell-only controls. This platform may be suitable for treating craniofacial and limb muscle trauma, as well as postoperative wounds of elderly and dystrophic patients.Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH under award numbers R21AR072287 (to Y.C.J.) and R01AR062368 (to A.J.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work was also funded by the Parker H. Petit Institute for Bioengineering and Bioscience Seed Grant Program (to A.J.G. and Y.C.J.)

    Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma

    Get PDF
    Muscle satellite cells (MuSCs) play a central role in muscle regeneration, but their quantity and function decline with comorbidity of trauma, aging, and muscle diseases. Although transplantation of MuSCs in traumatically injured muscle in the comorbid context of aging or pathology is a strategy to boost muscle regeneration, an effective cell delivery strategy in these contexts has not been developed. We engineered a synthetic hydrogel-based matrix with optimal mechanical, cell-adhesive, and protease-degradable properties that promotes MuSC survival, proliferation, and differentiation. Furthermore, we establish a biomaterial-mediated cell delivery strategy for treating muscle trauma, where intramuscular injections may not be applicable. Delivery of MuSCs in the engineered matrix significantly improved in vivo cell survival, proliferation, and engraftment in nonirradiated and immunocompetent muscles of aged and dystrophic mice compared to collagen gels and cell-only controls. This platform may be suitable for treating craniofacial and limb muscle trauma, as well as postoperative wounds of elderly and dystrophic patients.Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the NIH under award numbers R21AR072287 (to Y.C.J.) and R01AR062368 (to A.J.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. This work was also funded by the Parker H. Petit Institute for Bioengineering and Bioscience Seed Grant Program (to A.J.G. and Y.C.J.)

    Physics Opportunities of e+e- Linear Colliders

    Get PDF
    We describe the anticipated experimental program of an e+e- linear collider in the energy range 500 GeV -- 1.5 TeV. We begin with a description of current collider designs and the expected experimental environment. We then discuss precision studies of the W boson and top quark. Finally, we review the range of models proposed to explain the physics of electroweak symmetry breaking and show, for each case, the central role that the linear collider experiments will play in elucidating this physics. (to appear in Annual Reviews of Nuclear and Particle Science)Comment: 93 pages, latex + 23 figures; typos corrections + 1 reference adde

    Theory of Multidimensional Solitons

    Full text link
    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; soliton-soliton interactions; and bright ring solitons and quantum vortices. A thorough reference list is included.Comment: review paper, to appear as Chapter 5a in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma

    Get PDF
    Background: FDG-PET/CT imaging has an emerging role in staging and treatment planning of various tumor locations and a number of literature studies show that also the carcinoma of the anal canal may benefit from this diagnostic approach. We analyzed the potential impact of FDG-PET/CT in stage definition and target volume delineation of patients affected by carcinoma of the anal canal and candidates for curative radiotherapy. Methods: Twenty seven patients with biopsy proven anal carcinoma were enrolled. Pathology was squamous cell carcinoma in 20 cases, cloacogenic carcinoma in 3, adenocarcinoma in 2, and basal cell carcinoma in 2. Simulation was performed by PET/CT imaging with patient in treatment position. Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) were drawn on CT and on PET/CT fused images. PET-GTV and PET-CTV were respectively compared to CT-GTV and CT-CTV by Wilcoxon rank test for paired data. Results: PET/CT fused images led to change the stage in 5/27 cases (18.5%): 3 cases from N0 to N2 and 2 from M0 to M1 leading to change the treatment intent from curative to palliative in a case. Based on PET/CT imaging, GTV and CTV contours changed in 15/27 (55.6%) and in 10/27 cases (37.0%) respectively. PET-GTV and PET-CTV resulted significantly smaller than CT-GTV (p = 1.2 7 10-4) and CT-CTV (p = 2.9 7 10-4). PET/CT-GTV and PET/CT-CTV, that were used for clinical purposes, were significantly greater than CT-GTV (p = 6 7 10-5) and CT-CTV (p = 6 7 10-5). Conclusions: FDG-PET/CT has a potential relevant impact in staging and target volume delineation of the carcinoma of the anal canal. Clinical stage variation occurred in 18.5% of cases with change of treatment intent in 3.7%. The GTV and the CTV changed in shape and in size based on PET/CT imaging

    Dynamic Computational Model Suggests That Cellular Citizenship Is Fundamental for Selective Tumor Apoptosis

    Get PDF
    Computational models in the field of cancer research have focused primarily on estimates of biological events based on laboratory generated data. We introduce a novel in-silico technology that takes us to the next level of prediction models and facilitates innovative solutions through the mathematical system. The model's building blocks are cells defined phenotypically as normal or tumor, with biological processes translated into equations describing the life protocols of the cells in a quantitative and stochastic manner. The essentials of communication in a society composed of normal and tumor cells are explored to reveal “protocols” for selective tumor eradication. Results consistently identify “citizenship properties” among cells that are essential for the induction of healing processes in a healthy system invaded by cancer. These properties act via inter-cellular communication protocols that can be optimized to induce tumor eradication along with system recovery. Within the computational systems, the protocols universally succeed in removing a wide variety of tumors defined by proliferation rates, initial volumes, and apoptosis resistant phenotypes; they show high adaptability for biological details and allow incorporation of population heterogeneity. These protocols work as long as at least 32% of cells obey extra-cellular commands and at least 28% of cancer cells report their deaths. This low percentage implies that the protocols are resilient to the suboptimal situations often seen in biological systems. We conclude that our in-silico model is a powerful tool to investigate, to propose, and to exercise logical anti-cancer solutions. Functional results should be confirmed in a biological system and molecular findings should be loaded into the computational model for the next level of directed experiments

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-
    • …
    corecore