153 research outputs found

    Reliability of Synaptic Transmission at the Synapses of Held In Vivo under Acoustic Stimulation

    Get PDF
    BACKGROUND:The giant synapses of Held play an important role in high-fidelity auditory processing and provide a model system for synaptic transmission at central synapses. Whether transmission of action potentials can fail at these synapses has been investigated in recent studies. At the endbulbs of Held in the anteroventral cochlear nucleus (AVCN) a consistent picture emerged, whereas at the calyx of Held in the medial nucleus of the trapezoid body (MNTB) results on the reliability of transmission remain inconsistent. In vivo this discrepancy could be due to the difficulty in identifying failures of transmission. METHODS/FINDINGS:We introduce a novel method for detecting unreliable transmission in vivo. Based on the temporal relationship between a cells' waveform and other potentials in the recordings, a statistical test is developed that provides a balanced decision between the presence and the absence of failures. Its performance is quantified using simulated voltage recordings and found to exhibit a high level of accuracy. The method was applied to extracellular recordings from the synapses of Held in vivo. At the calyces of Held failures of transmission were found only rarely. By contrast, at the endbulbs of Held in the AVCN failures were found under spontaneous, excited, and suppressed conditions. In accordance with previous studies, failures occurred most abundantly in the suppressed condition, suggesting a role for inhibition. CONCLUSIONS/SIGNIFICANCE:Under the investigated activity conditions/anesthesia, transmission seems to remain largely unimpeded in the MNTB, whereas in the AVCN the occurrence of failures is related to inhibition and could be the basis/result of computational mechanisms for temporal processing. More generally, our approach provides a formal tool for studying the reliability of transmission with high statistical accuracy under typical in vivo recording conditions

    Presynaptic NMDA Receptors Mediate IPSC Potentiation at GABAergic Synapses in Developing Rat Neocortex

    Get PDF
    NMDA receptors are traditionally viewed as being located postsynaptically, at both synaptic and extrasynaptic locations. However, both anatomical and physiological studies have indicated the presence of NMDA receptors located presynaptically. Physiological studies of presynaptic NMDA receptors on neocortical GABAergic terminals and their possible role in synaptic plasticity are lacking.We report here that presynaptic NMDA receptors are present on GABAergic terminals in developing (postnatal day (PND) 12-15) but not older (PND21-25) rat frontal cortex. Using MK-801 in the recording pipette to block postsynaptic NMDA receptors, evoked and miniature IPSCs were recorded in layer II/III pyramidal cells in the presence of AMPA/KA receptor antagonists. Bath application of NMDA or NMDA receptor antagonists produced increases and decreases in mIPSC frequency, respectively. Physiologically patterned stimulation (10 bursts of 10 stimuli at 25 Hz delivered at 1.25 Hz) induced potentiation at inhibitory synapses in PND12-15 animals. This consisted of an initial rapid, large increase in IPSC amplitude followed by a significant but smaller persistent increase. Similar changes were not observed in PND21-25 animals. When 20 mM BAPTA was included in the recording pipette, potentiation was still observed in the PND12-15 group indicating that postsynaptic increases in calcium were not required. Potentiation was not observed when patterned stimulation was given in the presence of D-APV or the NR2B subunit antagonist Ro25-6981.The present results indicate that presynaptic NMDA receptors modulate GABA release onto neocortical pyramidal cells. Presynaptic NR2B subunit containing NMDA receptors are also involved in potentiation at developing GABAergic synapses in rat frontal cortex. Modulation of inhibitory GABAergic synapses by presynaptic NMDA receptors may be important for proper functioning of local cortical networks during development

    Risk factors for moderate and severe persistent pain in patients undergoing total knee and hip arthroplasty : a prospective predictive study

    Get PDF
    Persistent post-surgical pain (PPSP) is a major clinical problem with significant individual, social and health care costs. The aim of this study was to examine the joint role of demographic, clinical and psychological risk factors in the development of moderate and severe PPSP after Total Knee and Hip Arthroplasty (TKA and THA, respectively). This was a prospective study wherein a consecutive sample of 92 patients were assessed 24 hours before (T1), 48 hours after (T2) and 4-6 months (T3) after surgery. Hierarchical logistic regression analyses were performed to identify predictors of moderate and severe levels of PPSP. Four to six months after TKA and THA, 54 patients (58.7%) reported none or mild pain (Numerical Rating Scale: NRS 3). In the final multivariate hierarchical logistic regression analyses, illness representations concerning the condition leading to surgery (osteoarthritis), such as a chronic timeline perception of the disease, emerged as a significant predictor of PPSP. Additionally, post-surgical anxiety also showed a predictive role in the development of PPSP. Pre-surgical pain was the most significant clinical predictive factor and, as expected, undergoing TKA was associated with greater odds of PPSP development than THA. The findings on PPSP predictors after major joint arthroplasties can guide clinical practice in terms of considering cognitive and emotional factors, together with clinical factors, in planning acute pain management before and after surgery.This work was supported by a Project grant (PTDC/SAU-NEU/108557/2008) and by a PhD grant (SFRH/BD/36368/2007) from the Portuguese Foundation of Science and Technology, COMPETE and FEDER. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    Microbiome to Brain:Unravelling the Multidirectional Axes of Communication

    Get PDF
    The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome

    Biomarkers for nutrient intake with focus on alternative sampling techniques

    Full text link
    corecore