26 research outputs found

    LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA.

    Get PDF
    The DExD/H box RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene-5 (mda-5) sense viral RNA in the cytoplasm of infected cells and activate signal transduction pathways that trigger the production of type I interferons (IFNs). Laboratory of genetics and physiology 2 (LGP2) is thought to influence IFN production by regulating the activity of RIG-I and mda-5, although its mechanism of action is not known and its function is controversial. Here we show that expression of LGP2 potentiates IFN induction by polyinosinic-polycytidylic acid [poly(I:C)], commonly used as a synthetic mimic of viral dsRNA, and that this is particularly significant at limited levels of the inducer. The observed enhancement is mediated through co-operation with mda-5, which depends upon LGP2 for maximal activation in response to poly(I:C). This co-operation is dependent upon dsRNA binding by LGP2, and the presence of helicase domain IV, both of which are required for LGP2 to interact with mda-5. In contrast, although RIG-I can also be activated by poly(I:C), LGP2 does not have the ability to enhance IFN induction by RIG-I, and instead acts as an inhibitor of RIG-I-dependent poly(I:C) signaling. Thus the level of LGP2 expression is a critical factor in determining the cellular sensitivity to induction by dsRNA, and this may be important for rapid activation of the IFN response at early times post-infection when the levels of inducer are low

    Global Priorities for Conserving the Evolutionary History of Sharks, Rays, and Chimaeras

    Get PDF
    In an era of accelerated biodiversity loss and limited conservation resources, systematic prioritization of species and places is essential. In terrestrial vertebrates, evolutionary distinctness has been used to identify species and locations that embody the greatest share of evolutionary history. We estimate evolutionary distinctness for a large marine vertebrate radiation on a dated taxon-complete tree for all 1,192 chondrichthyan fishes (sharks, rays and chimaeras) by augmenting a new 610-species molecular phylogeny using taxonomic constraints. Chondrichthyans are by far the most evolutionarily distinct of all major radiations of jawed vertebrates—the average species embodies 26 million years of unique evolutionary history. With this metric, we identify 21 countries with the highest richness, endemism and evolutionary distinctness of threatened species as targets for conservation prioritization. On average, threatened chondrichthyans are more evolutionarily distinct—further motivating improved conservation, fisheries management and trade regulation to avoid significant pruning of the chondrichthyan tree of life

    Lessons from Italian Experiences: Bottlenecks, New Challenges and Opportunities

    No full text
    This contribution provides some conclusive arguments on the role of Ecosystem Services in Spatial planning for Green and Blue infrastructure design deduced from the Italian experiences examined in the previous chapters. The Chapter reflects on some specifically Italian aspects which make critical the integration of Ecosystem services into the definition of territorial decisions for the enhancement of human well-being, public health and quality of life. The aim is to highlight the current challenges and bottlenecks in ES-based Planning by focusing on the innovative approaches and methods adopted in the various cases to attempt or resolve critical issues. The topic of Green and Blue infrastructures is investigated in a Planning perspective as a strategic design tool which can manage and regulate multiple ES, and implement them into the spatial planning process

    Green Infrastructure Planning to Tackle Climate Change in Latin American Cities

    No full text
    Green infrastructure (GI) offers a new perspective on the benefits of urban and peri-urban green spaces. In Latin America, the urbanization process has involved a loss of these green spaces of high environmental value. These changes have had a series of consequences on the climate of Latin American cities that have been intensified by climate change. Although the contribution of GI to urban climate regulation and to climate change mitigation and adaptation is growing in recognition, the debate has still had little influence on urban planning initiatives, with exceptions in North America and Europe. In Latin America and Africa little is known about how climate change adaptation plans incorporate the development of urban GI. This chapter explores institutional actions to develop GI as an alternative to tackle climate change in Latin American cities. A bibliographic review was conducted using the terms "green infrastructure" or "climate change." The analysis focused on identifying: responsible institutions, objectives, and the understanding and use of the GI concept. Results indicate that GI has been recently and slowly incorporated into urban planning. This scenario suggests a growing awareness of the need to plan sustainable, green, and more prepared cities to face climate change. However, planners have not considered enough the potential contribution of GI; thus, the role of GI has not been properly identified and valued in urban planning, and planning and design efforts do not maximize the benefits of G
    corecore