30 research outputs found

    Deletion of the N-terminus of SF2/ASF Permits RS-Domain-Independent Pre-mRNA Splicing

    Get PDF
    Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing

    The meiofauna of artificial water-filled tree holes: colonization and bottom-up effects

    No full text
    Ptatscheck C, Traunspurger W. The meiofauna of artificial water-filled tree holes: colonization and bottom-up effects. Aquatic Ecology. 2014;48(3):285-295.The meiofaunal community of artificial water-filled tree holes was determined, and the bottom-up effects of different amounts of leaf litter on abundance and diversity were estimated. We assume a positive impact of leaf litter on meiofaunal abundances, species diversity, and trophic links. Plastic cups with different amounts of leaf litter were placed in a beech forest (Teutoburg Forest, Bielefeld, Germany) for 24 weeks. As early as 1 week later, the artificial tree holes were colonized by bdelloid rotifers, tardigrades, and nematodes. Rotifers were dominant throughout the experiment, followed by nematodes and tardigrades. The 29 nematode species that were identified included bacterial and hyphal feeders, with common species such as Plectus cirratus/accuminatus and Aphelenchoides parietinus predominating. Impacts of water volume (up to complete desiccation), pH, and O-2 on the meiofaunal community were not detected, whereas the addition of leaf litter resulted in bottom-up effects. Nematode abundance, especially that of bacterial feeders, and species number increased with increasing leaf input. The predatory nematode Prionchulus muscorum was found only in treatments containing high leaf content. Rotifer abundances were partly negatively affected by the amount of added leaves and, like tardigrades, showed a reversal in their correlation at higher leaf inputs. Our study revealed the fast colonization of small water bodies by meiofaunal organisms and the importance of passively distribution. Furthermore, the results provide a comparison with the meiofaunal community in lakes and soil

    Cricket calling communities as an indicator of the invasive ant Wasmannia auropunctata in an insular biodiversity hotspot

    No full text
    International audienceInvasive species are a major concern for the maintenance of ecosystem services and biodiversity but are difficult to mitigate. Upstream solutions to prevent their impact, including their detection, are needed. Wasmannia auropunctata, an invasive ant living in vagile supercolonies, is especially hard to track and is a major threat for tropical ecosystems and local animal communities. As part of such tropical communities, crickets are sensitive to ecological conditions, easy to collect, detectable and identifiable through their species-specific calls. Here, we evaluated the use of an acoustic community of crickets as an indicator of the presence of W. auropunctata in New Caledonia. We evaluated the dominance of the crickets in the soundscape, describe the cricket community structure and diversity along a shrubland to forest gradient, characterize these cricket communities structure and diversity in the light of ongoing invasion by W. auropunctata, and identify cricket species' indicators of the invasion. Acoustic recordings collected on 24 sites were described using human-listening and spectrographic visualization. The results demonstrated a clear dominance of the cricket group in the New Caledonian nocturnal soundscapes. Each habitat harbored a specific acoustic cricket community related to specific environmental attributes including vegetation height, daily variation of humidity and temperature. The presence of W. auropunctata was significantly associated with a lower cricket acoustic activity and species richness at night. Of the 19 species detected, four nocturnal species were identified as indicator of non-invaded forests and preforests. This work supports the use of acoustic as an alternative method to detect invasion
    corecore