12 research outputs found

    Chimpanzee (Pan troglodytes) Precentral Corticospinal System Asymmetry and Handedness: A Diffusion Magnetic Resonance Imaging Study

    Get PDF
    Most humans are right handed, and most humans exhibit left-right asymmetries of the precentral corticospinal system. Recent studies indicate that chimpanzees also show a population-level right-handed bias, although it is less strong than in humans.We used in vivo diffusion-weighted and T1-weighted magnetic resonance imaging (MRI) to study the relationship between the corticospinal tract (CST) and handedness in 36 adult female chimpanzees. Chimpanzees exhibited a hemispheric bias in fractional anisotropy (FA, left>right) and mean diffusivity (MD, right>left) of the CST, and the left CST was centered more posteriorly than the right. Handedness correlated with central sulcus depth, but not with FA or MD.These anatomical results are qualitatively similar to those reported in humans, despite the differences in handedness. The existence of a left>right FA, right>left MD bias in the corticospinal tract that does not correlate with handedness, a result also reported in some human studies, suggests that at least some of the structural asymmetries of the corticospinal system are not exclusively related to laterality of hand preference

    The Relation between Handedness Indices and Reproductive Success in a Non-Industrial Society

    Get PDF
    <p>The evolution of handedness in human populations has intrigued scientists for decades. However, whether handedness really affects Darwinian fitness is unclear and not yet studied in a non-industrial society where selection pressures on health and handedness are likely to be similar to the situation in which handedness has evolved. We measured both hand preference and asymmetry of hand skill (speed of fine motor control, measured by a pegboard task, and accuracy of throwing), as they measure different aspects of handedness. We investigated the associations between both the direction (left versus right) and strength (the degree to which a certain preference or asymmetry in skill is manifested, independent of the direction) of handedness. We analyzed to what extent these measures predict the number of offspring and self-reported illness in a non-industrial society in Papua, Indonesia. As it is known that body height and fitness are correlated, data on body height was also collected. Due to low numbers of left-handers we could not investigate the associations between direction of hand preference and measures of Darwinian fitness. We found a positive association between strength of asymmetry of hand skill (pegboard) and the number of children men sired. We also found a positive association for men between strength of hand preference and number of children who died within the first three years of life. For women we found no such effects. Our results may indicate that strength of handedness, independent of direction, has fitness implications and that the persistence of the polymorphism in handedness may be ascribed to either balancing selection on strength of asymmetry of hand skill versus strength of hand preference, or sexual antagonistic selection. No relationships between health and handedness were found, perhaps due to disease related selective disappearance of subjects with a specific handedness.</p>

    On the other hand: Including left-handers in cognitive neuroscience and neurogenetics

    No full text
    Contains fulltext : 128099.pdf (publisher's version ) (Closed access
    corecore