4 research outputs found

    An Application of Kadets-Pełczyński Sets to Narrow Operators

    No full text
    A known analogue of the Pitt compactness theorem for function spaces asserts that if 1 ≤ p < 2 and p < r < ∞, then every operator T : Lp → Lr is narrow. Using a technique developed by M.I. Kadets and A. Pełczyński, we prove a similar result. More precisely, if 1 ≤ p ≤ 2 and F is a Köthe {Banach space on [0; 1] with an absolutely continuous norm containing no isomorph of Lp such that F is subset of Lp, then every regular operator T : Lp → F is narrow.Известный аналог теоремы Питта о компактности для функциональных пространств утверждает, что если 1 ≤ p < 2 и p < r < ∞, то каждый оператор Lp → Lr узкий. Используя технику, разработанную М.И. Кадецем и А. Пелчинским, мы доказываем похожий результат. Именно, если 1 ≤ p ≤ 2 и F - банахово пространство Кете на [0; 1] с абсолютно непрерывной нормой, не содержащее подпространств, изоморфных Lp, причем F является подмножеством Lp, то каждый регулярный оператор T : Lp → F узкий

    Замiтка про оператори з функцiональних просторiв Кете у простiр c0(Γ)c_0(\Gamma)

    Get PDF
    It is well known that every operator from E=LpE = L_p, 1 \leq p < \infty to c0c_0 is narrow. We show that this result can be extended to a more general class of Köthe function spaces EE.Метою замітки є узагальнення відомого результату про вузькість будь-якого оператора з простору E=LpE = L_p в c0c_0 при 1 \leq p < \infty на випадок загальнішого класу просторів Кете EE

    A note on operators from K"{o}the function spaces to c0(Gamma)c_0(Gamma)

    No full text
    It is well known that every operator from E=LpE = L_p, 1leqp<infty1 leq p <infty to c0c_0 is narrow. We show that this result can beextended to a more general class of K"{o}the function spacesEE

    Points of narrowness and uniformly narrow operators

    No full text
    It is known that the sum of every two narrow operators on L1L_1 is narrow, however the same is false for LpL_p with 101 0 there exists a decomposition e=e+ee = e' + e'' to disjoint elements such that S(e)S(e)<ε\|S(e') - S(e'')\| < \varepsilon and T(e)T(e)<ε\|T(e') - T(e'')\| < \varepsilon. The standard tool in the literature to prove the narrowness of the sum of two narrow operators S+TS+T is to show that the pair S,TS,T is uniformly narrow. We study the question of whether every pair of narrow operators with narrow sum is uniformly narrow. Having no counterexample, we prove several theorems showing that the answer is affirmative for some partial cases
    corecore