8 research outputs found

    "Carbohydrate dynamics in roots, stems, and branches after maintenance pruning in two common urban tree species of North America"

    No full text
    "The ability of plants to tolerate stress is determined in part by the carbon allocated to their reserves. We studied two common urban tree species in northeastern North America, Acer saccharinum (Silver maple, native) and Acer platanoides (Norway maple, exotic), to assess the dynamics of non-structural carbohydrate (NSC) concentrations immediately following a maintenance pruning of 30% of the tree crown. NSC concentrations were measured by high-performance liquid chromatography in branches, main stems, and root tissues for both pruned and un-pruned trees at three intervals during the growing season. NSC concentrations in tree organs of A. platanoides were 75% higher than in A. saccharinum. Maintenance pruning did not have any significant depletion effect on carbohydrate concentrations in the tissues of either species. Yet, there was a significant increase in the NSC concentrations in un-pruned branches of pruned trees of A. platanoides at the end of the growing season, but no effect was observed in A. saccharinum. Higher levels of carbohydrates after pruning in woody plant tissues suggested that A. platanoides may have compensatory mechanisms that allow this species to respond better to maintenance pruning than A. saccharinum. © 2018 Elsevier GmbH

    Carbohydrate dynamics in roots, stems, and branches after maintenance pruning in two common urban tree species of North America

    No full text
    The ability of plants to tolerate stress is determined in part by the carbon allocated to their reserves. We studied two common urban tree species in northeastern North America, Acer saccharinum (Silver maple, native) and Acer platanoides (Norway maple, exotic), to assess the dynamics of non-structural carbohydrate (NSC) concentrations immediately following a maintenance pruning of 30% of the tree crown. NSC concentrations were measured by high-performance liquid chromatography in branches, main stems, and root tissues for both pruned and un-pruned trees at three intervals during the growing season. NSC concentrations in tree organs of A. platanoides were 75% higher than in A. saccharinum. Maintenance pruning did not have any significant depletion effect on carbohydrate concentrations in the tissues of either species. Yet, there was a significant increase in the NSC concentrations in un-pruned branches of pruned trees of A. platanoides at the end of the growing season, but no effect was observed in A. saccharinum. Higher levels of carbohydrates after pruning in woody plant tissues suggested that A. platanoides may have compensatory mechanisms that allow this species to respond better to maintenance pruning than A. saccharinum. © 2018 Elsevier Gmb

    Consequences of biodiversity loss for litter decomposition across biomes

    No full text
    The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere1, 2, 3. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs2, 4. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical4, 5, 6 given the rapid loss of species worldwide and the effects of this loss on human well-being7, 8, 9. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition4, 5, 6, 10, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism4, 9, 10, 11, 12. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales

    CO2 Fertilization: When, Where, How Much?

    No full text

    Advances in Discovery of PDE10A Inhibitors for CNS-Related Disorders. Part 1: Overview of the Chemical and Biological Research

    No full text

    Saturation of the Terrestrial Carbon Sink

    No full text
    corecore