9 research outputs found

    Isotropic-nematic phase equilibrium and phase separation of κ-carrageenan in aqueous salt solution: Experimental and theoretical approaches

    No full text
    The behavior of chiral-nematic and isotropic phases of helical kappa-carrageenan in aqueous solution of sodium iodide was compared with that of the anisotropic biphasic phase that contains both these phases. On the basis of birefringence, rheology, chemical analysis, average molecular weight, and polydispersity index measurements, we derived a number of characteristic differences as well as similarities between these phases, over a range of polysaccharide concentrations obtained by the dilution of each phase. For example, we assessed the critical concentration of an isotropic-anisotropic transition (C-i), the temperature of the anisotropic-isotropic phase shift during thermal heating-cooling cycles, and the viscosity changes due to the phase shift and due to the diminishing of the helical conformation. We also demonstrated how the different phases and their dilutions behave under the effect of shear and frequency of oscillation and how the viscoelastic properties vary in each phase and discussed the isotropic and anisotropic liquid crystal controlling behavior mechanisms. From a theoretical point of view, we propose to combine the wormlike chain model for semiflexible polyelectrolytes interacting via both hard-core and electrostatic repulsion to assess the concentration of isotropic-nematic transition, to assess the coexistence concentration range, and to determine the effects of charge by applying the effective diameter and a twisting effect

    Morphological, mechanical and mucoadhesive properties of electrospun chitosan/phospholipid hybrid nanofibers

    Get PDF
    This study aimed to develop hybrid electrospun chitosan–phospholipid nanofibers and investigate the effect of phospholipid (P) content and chitosans (Ch) molecular weights (Mw) and degree of acetylation (DA), on the morphological, mechanical and mucoadhesive properties of the nanofibers. Electrospun Ch/P nanofibers exhibited a smooth and uniform surface with average diameters ranging from 300 to 1000 nm, as observed by scanning electron microscopy (SEM). The average diameter of the nanofibers was observed to increase with the increase of the Mw and degree of deacetylation of Ch, and phospholipid content. The elastic and adhesive properties of the nanofibers were determined by atomic force microscopy, and displayed higher values for higher Mw and lower DA Ch used. The elastic modulus of electrospun Ch/P hybrid fibers determined for the different conditions tested was found to be in the range of 500 and 1400 MPa. Furthermore, electrospun Ch/P nanofibers displayed mucoadhesive properties expressed by the work of adhesion calculated after the compression of the nanofibers against a section of pig small intestine. Our results showed that the increase in phospholipid content and DA of Ch decrease the work of adhesion, while the increase of Mw resulted in slightly higher work of adhesion of the nanofibers. © 2018 by the authors. Licensee MDPI, Basel, Switzerland

    Nanofibrous nonwovens based on dendritic-linear-dendritic poly(ethylene glycol) hybrids

    No full text
    Dendritic-linear-dendritic (DLD) hybrids are highly functional materials combining the properties of linear and dendritic polymers. Attempts to electrospin DLD polymers composed of hyperbranched dendritic blocks of 2,2-bis(hydroxymethyl) propionic acid on a linear poly(ethylene glycol) core proved unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co-electrospun polymer and the solvent systems used for the preparation of the electrospinning solutions exerted a significant effect on the diameter and morphology of the electrospun fibers. It is worth-noting that aqueous solutions of the DLD polymers and only 1% (w/v) poly(ethylene oxide) resulted in the production of smoother and thinner nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 45949. © 2017 Wiley Periodicals, Inc
    corecore