626 research outputs found

    Water vapor deposition from the inner gas coma onto the nucleus of Comet 67P/Churyumov-Gerasimenko

    Get PDF
    Rosetta has detected water ice existing on the surface of Comet 67P/Churyumov-Gerasimenko in various types of features. One of particular interest is the frost-like layer observed at the edge of receding shadows during the whole mission, interpreted as the recondensation of a thin layer of water ice. Two possible mechanisms, (1) subsurface ice sublimation and (2) gas coma deposition, have been proposed for producing this recondensation process and diurnal cycles of water ice. Previous studies have demonstrated both mechanisms based on simplified models. More precise and modern models are yet insufficient when addressing the gas-coma-deposition mechanism. We aim to study the recondensation from the inner water gas coma of the 67P/Churyumov-Gerasimenko with more physical constraints including the OSIRIS images, nucleus shape model, and insolation conditions. We compute, for the first time, the backflux distributions from the coma with various boundary conditions. Numerical simulations of this gas-coma-deposition process show that the equivalent water ice deposition can be up to several microns in an hour of accumulation time close to the perihelion passage, which is comparable with the simulation results of the other subsurface-ice sublimation mechanism

    Birkhoff's theorem in the f(T) gravity

    Full text link
    Generalized from the so-called teleparallel gravity which is exactly equivalent to general relativity, the f(T)f(T) gravity has been proposed as an alternative gravity model to account for the dark energy phenomena. In this letter we prove that the external vacuum gravitational field for a spherically symmetric distribution of source matter in the f(T)f(T) gravity framework must be static and the conclusion is independent of the radial distribution and spherically symmetric motion of the source matter that is, whether it is in motion or static. As a consequence, the Birkhoff's theorem is valid in the general f(T)f(T) theory. We also discuss its application in the de Sitter space-time evolution phase as preferred to by the nowadays dark energy observations.Comment: 5p

    Experimental Implementation of the Quantum Random-Walk Algorithm

    Full text link
    The quantum random walk is a possible approach to construct new quantum algorithms. Several groups have investigated the quantum random walk and experimental schemes were proposed. In this paper we present the experimental implementation of the quantum random walk algorithm on a nuclear magnetic resonance quantum computer. We observe that the quantum walk is in sharp contrast to its classical counterpart. In particular, the properties of the quantum walk strongly depends on the quantum entanglement.Comment: 5 pages, 4 figures, published versio

    Mean-field Phase Diagram of Two-Dimensional Electrons with Disorder in a Weak Magnetic Field

    Get PDF
    We study two-dimensional interacting electrons in a weak perpendicular magnetic field with the filling factor ν1\nu \gg 1 and in the presence of a quenched disorder. In the framework of the Hartree-Fock approximation, we obtain the mean-field phase diagram for the partially filled highest Landau level. We find that the CDW state can exist if the Landau level broadening 1/2τ1/2\tau does not exceed the critical value 1/2τc=0.038ωH1/2\tau_{c}=0.038\omega_{H}. Our analysis of weak crystallization corrections to the mean-field results shows that these corrections are of the order of (1/ν)2/31(1/\nu)^{2/3}\ll 1 and therefore can be neglected

    Empirical Determination of Bang-Bang Operations

    Full text link
    Strong and fast "bang-bang" (BB) pulses have been recently proposed as a means for reducing decoherence in a quantum system. So far theoretical analysis of the BB technique relied on model Hamiltonians. Here we introduce a method for empirically determining the set of required BB pulses, that relies on quantum process tomography. In this manner an experimenter may tailor his or her BB pulses to the quantum system at hand, without having to assume a model Hamiltonian.Comment: 14 pages, 2 eps figures, ReVTeX4 two-colum

    The r-modes in accreting neutron stars with magneto-viscous boundary layers

    Full text link
    We explore the dynamics of the r-modes in accreting neutron stars in two ways. First, we explore how dissipation in the magneto-viscous boundary layer (MVBL) at the crust-core interface governs the damping of r-mode perturbations in the fluid interior. Two models are considered: one assuming an ordinary-fluid interior, the other taking the core to consist of superfluid neutrons, type II superconducting protons, and normal electrons. We show, within our approximations, that no solution to the magnetohydrodynamic equations exists in the superfluid model when both the neutron and proton vortices are pinned. However, if just one species of vortex is pinned, we can find solutions. When the neutron vortices are pinned and the proton vortices are unpinned there is much more dissipation than in the ordinary-fluid model, unless the pinning is weak. When the proton vortices are pinned and the neutron vortices are unpinned the dissipation is comparable or slightly less than that for the ordinary-fluid model, even when the pinning is strong. We also find in the superfluid model that relatively weak radial magnetic fields ~ 10^9 G (10^8 K / T)^2 greatly affect the MVBL, though the effects of mutual friction tend to counteract the magnetic effects. Second, we evolve our two models in time, accounting for accretion, and explore how the magnetic field strength, the r-mode saturation amplitude, and the accretion rate affect the cyclic evolution of these stars. If the r-modes control the spin cycles of accreting neutron stars we find that magnetic fields can affect the clustering of the spin frequencies of low mass x-ray binaries (LMXBs) and the fraction of these that are currently emitting gravitational waves.Comment: 19 pages, 8 eps figures, RevTeX; corrected minor typos and added a referenc

    The number of eigenstates: counting function and heat kernel

    Full text link
    The main aim of this paper is twofold: (1) revealing a relation between the counting function N(lambda) (the number of the eigenstates with eigenvalue smaller than a given number) and the heat kernel K(t), which is still an open problem in mathematics, and (2) introducing an approach for the calculation of N(lambda), for there is no effective method for calculating N(lambda) beyond leading order. We suggest a new expression of N(lambda) which is more suitable for practical calculations. A renormalization procedure is constructed for removing the divergences which appear when obtaining N(lambda) from a nonuniformly convergent expansion of K(t). We calculate N(lambda) for D-dimensional boxes, three-dimensional balls, and two-dimensional multiply-connected irregular regions. By the Gauss-Bonnet theorem, we generalize the simply-connected heat kernel to the multiply-connected case; this result proves Kac's conjecture on the two-dimensional multiply-connected heat kernel. The approaches for calculating eigenvalue spectra and state densities from N(lambda) are introduced.Comment: 17 pages, 1 figure. v2: Equivalent forms of Eqs. (4.8) and (9.2) are adde

    Bosonic Excitations in Random Media

    Full text link
    We consider classical normal modes and non-interacting bosonic excitations in disordered systems. We emphasise generic aspects of such problems and parallels with disordered, non-interacting systems of fermions, and discuss in particular the relevance for bosonic excitations of symmetry classes known in the fermionic context. We also stress important differences between bosonic and fermionic problems. One of these follows from the fact that ground state stability of a system requires all bosonic excitation energy levels to be positive, while stability in systems of non-interacting fermions is ensured by the exclusion principle, whatever the single-particle energies. As a consequence, simple models of uncorrelated disorder are less useful for bosonic systems than for fermionic ones, and it is generally important to study the excitation spectrum in conjunction with the problem of constructing a disorder-dependent ground state: we show how a mapping to an operator with chiral symmetry provides a useful tool for doing this. A second difference involves the distinction for bosonic systems between excitations which are Goldstone modes and those which are not. In the case of Goldstone modes we review established results illustrating the fact that disorder decouples from excitations in the low frequency limit, above a critical dimension dcd_c, which in different circumstances takes the values dc=2d_c=2 and dc=0d_c=0. For bosonic excitations which are not Goldstone modes, we argue that an excitation density varying with frequency as ρ(ω)ω4\rho(\omega) \propto \omega^4 is a universal feature in systems with ground states that depend on the disorder realisation. We illustrate our conclusions with extensive analytical and some numerical calculations for a variety of models in one dimension

    Interacting new agegraphic viscous dark energy with varying GG

    Full text link
    We consider the new agegraphic model of dark energy with a varying gravitational constant, GG, in a non-flat universe. We obtain the equation of state and the deceleration parameters for both interacting and noninteracting new agegraphic dark energy. We also present the equation of motion determining the evolution behavior of the dark energy density with a time variable gravitational constant. Finally, we generalize our study to the case of viscous new agegraphic dark energy in the presence of an interaction term between both dark components.Comment: 12 pages, accepted for publication in IJTP (2010

    Non-adiabatic charge pump: an exact solution

    Get PDF
    We derived a general and exact expression of current for quantum parametric charge pumps in the non-adiabatic regime at finite pumping frequency and finite driving amplitude. The non-perturbative theory predicts a remarkable plateau structure in the pumped current due to multi-photon assisted processes in a double-barrier quantum well pump involving only a {\it single} pumping potential. It also predicts a current reversal as the resonant level of the pump crosses the Fermi energy of the leads
    corecore