822 research outputs found

    Excitonic and vibronic spectra of Frenkel excitons in a two-dimensional simple latice

    Full text link
    Excitonic and vibronic spectra of Frenkel excitons (FEs) in a two-dimensional (2D) lattice with one molecule per unit cell have been studied and their manifestation in the linear absorption is simulated. We use the Green function formalism, the vibronic approach (see Lalov and Zhelyazkov [Phys. Rev. B \textbf{75}, 245435 (2007)]), and the nearest-neighbor approximation to find expressions of the linear absorption lineshape in closed form (in terms of the elliptic integrals) for the following 2D models: (a) vibronic spectra of polyacenes (naphthalene, anthracene, tetracene); (b) vibronic spectra of a simple hexagonal lattice. The two 2D models include both linear and quadratic FE--phonon coupling. Our simulations concern the excitonic density of state (DOS), and also the position and lineshape of vibronic spectra (FE plus one phonon, FE plus two phonons). The positions of many-particle (MP-unbound) FE--phonon states, as well as the impact of the Van Hove singularities on the linear absorption have been established by using typical values of the excitonic and vibrational parameters. In the case of a simple hexagonal lattice the following types of FEs have been considered: (i) non-degenerate FEs whose transition dipole moment is perpendicular to the plane of the lattice, and (ii) degenerate FEs with transition dipole moments parallel to the layer. We found a cumulative impact of the linear and quadratic FE--phonon coupling on the positions of vibronic maxima in the case (ii), and a compensating impact in the case (i).Comment: 13 pages, 12 figure

    Recognising the importance of 'family time-out' in consultations: An exploratory qualitative study

    Get PDF
    Objectives: Patients are often accompanied by family or companions during consultations, but little is known about how this might influence the process. We explored how the presence of a companion in a consultation contributes to communication and the decision-making process. Design: Observational study. Setting: A teaching hospital and a district general hospital in south-west England. Participants: 31 patients and their physicians were observed during consultations in which decisions to undergo palliative chemotherapy were made. Each patient was accompanied by at least one companion. Outcome measures: Communication patterns between physicians, patients and companions. Results: In addition to standard patient/physician interactions, patients and companions were often found to discuss medical information and exchange opinions between themselves without the physician actively participating. We called these instances 'family timeout'. On the occasion of disagreement between patients and companions about preferred treatment options, physicians and patients were able to agree the decision while acknowledging the differences in opinion. Conclusions: Instances of 'family time-out' may contribute to better consultation outcomes because they are understood and supported by the patient's social system. This study highlights the potentially important role of exchanges between patients and companions during consultations and how physicians may benefit from observation of such exchanges. We recommend testing the value of making space for family time-out during consultations. Also, we recommend further study into the medical ethics of family time-out. While the focus here is on palliative chemotherapy, this finding has implications for other consultations, particularly those involving difficult treatment decisions

    Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid

    Get PDF
    The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC

    Triplet superconductivity in quasi one-dimensional systems

    Full text link
    We study a Hubbard hamiltonian, including a quite general nearest-neighbor interaction, parametrized by repulsion V, exchange interactions Jz, Jperp, bond-charge interaction X and hopping of pairs W. The case of correlated hopping, in which the hopping between nearest neighbors depends upon the occupation of the two sites involved, is also described by the model for sufficiently weak interactions. We study the model in one dimension with usual continuum-limit field theory techniques, and determine the phase diagram. For arbitrary filling, we find a very simple necessary condition for the existence of dominant triplet superconducting correlations at large distance in the spin SU(2) symmetric case: 4V+J<0. In the correlated hopping model, the three-body interaction should be negative for positive V. We also compare the predictions of this weak-coupling treatment with numerical exact results for the correlated-hopping model obtained by diagonalizing small chains, and using novel techniques to determine the opening of the spin gap.Comment: 8 pages, 3 figure

    New results from the NA57 experiment

    Full text link
    We report results from the experiment NA57 at CERN SPS on hyperon production at midrapidity in Pb-Pb collisions at 158 AA GeV/cc and 40 AA GeV/cc. Λ\Lambda, Ξ\Xi and Ω\Omega yields are compared with those from the STAR experiment at the higher energy of the BNL RHIC. Λ\Lambda, Ξ\Xi, Ω\Omega\ and preliminary KS0K_S^0 transverse mass spectra are presented and interpreted within the framework of a hydro-dynamical blast wave model.Comment: 8 pages, 3 figures, contribution to the proceedings of The XXXVIIIth Rencontres de Moriond "QCD and High Energy Hadronic Interactions

    Expansion dynamics of Pb-Pb collisions at 40 A GeV/c viewed by negatively charged hadrons

    Full text link
    In this paper we present results on transverse mass spectra and Hanbury-Brown and Twiss correlation functions of negatively charged hadrons, which are expected to be mostly negative pions, measured in Pb-Pb collisions at 40 A GeV/c beam momentum. Based on these data, the collision dynamics and the space-time extent of the system at the thermal freeze-out are studied over a centrality range corresponding to the most central 53% of the Pb--Pb inelastic cross section. Comparisons with freeze-out conditions of strange particles and HBT results from other experiments are discussed.Comment: 29 pages, 18 figure

    Strange particle production in 158 and 40 AA GeV/cc Pb-Pb and p-Be collisions

    Full text link
    Results on strange particle production in Pb-Pb collisions at 158 and 40 AA GeV/cc beam momentum from the NA57 experiment at CERN SPS are presented. Particle yields and ratios are compared with those measured at RHIC. Strangeness enhancements with respect to p-Be reactions at the same beam momenta have been also measured: results about their dependence on centrality and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference, July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages, 5 figure

    Jupiter's X-ray Emission During Solar Minimum

    Get PDF
    The 2007–2009 solar minimum was the longest of the space age. We present the first of two companion papers on Chandra and XMM‐Newton X‐ray campaigns of Jupiter through February–March 2007. We find that low solar X‐ray flux during solar minimum causes Jupiter's equatorial regions to be exceptionally X‐ray dim (0.21 GW at minimum; 0.76 GW at maximum). While the Jovian equatorial emission varies with solar cycle, the aurorae have comparably bright intervals at solar minimum and maximum. We apply atomic charge exchange models to auroral spectra and find that iogenic plasma of sulphur and oxygen ions provides excellent fits for XMM‐Newton observations. The fitted spectral S:O ratios of 0.4–1.3 are in good agreement with in situ magnetospheric S:O measurements of 0.3–1.5, suggesting that the ions that produce Jupiter's X‐ray aurora predominantly originate inside the magnetosphere. The aurorae were particularly bright on 24–25 February and 8–9 March, but these two observations exhibit very different spatial, spectral, and temporal behavior; 24–25 February was the only observation in this campaign with significant hard X‐ray bremsstrahlung from precipitating electrons, suggesting this may be rare. For 8–9 March, a bremsstrahlung component was absent, but bright oxygen O6+ lines and best‐fit models containing carbon, point to contributions from solar wind ions. This contribution is absent in the other observations. Comparing simultaneous Chandra ACIS and XMM‐Newton EPIC spectra showed that ACIS systematically underreported 0.45‐ to 0.6‐keV Jovian emission, suggesting quenching may be less important for Jupiter's atmosphere than previously thought. We therefore recommend XMM‐Newton for spectral analyses and quantifying opacity/quenching effects

    On Physical Equivalence between Nonlinear Gravity Theories

    Full text link
    We argue that in a nonlinear gravity theory, which according to well-known results is dynamically equivalent to a self-gravitating scalar field in General Relativity, the true physical variables are exactly those which describe the equivalent general-relativistic model (these variables are known as Einstein frame). Whenever such variables cannot be defined, there are strong indications that the original theory is unphysical. We explicitly show how to map, in the presence of matter, the Jordan frame to the Einstein one and backwards. We study energetics for asymptotically flat solutions. This is based on the second-order dynamics obtained, without changing the metric, by the use of a Helmholtz Lagrangian. We prove for a large class of these Lagrangians that the ADM energy is positive for solutions close to flat space. The proof of this Positive Energy Theorem relies on the existence of the Einstein frame, since in the (Helmholtz--)Jordan frame the Dominant Energy Condition does not hold and the field variables are unrelated to the total energy of the system.Comment: 37 pp., TO-JLL-P 3/93 Dec 199
    • 

    corecore