7 research outputs found
Synchronous collaborative information retrieval: techniques and evaluation
Synchronous Collaborative Information Retrieval refers to
systems that support multiple users searching together at the same time in order to satisfy a shared information need. To date most SCIR systems have focussed on providing various awareness tools in order to enable collaborating users to coordinate the search task. However, requiring users to both search and coordinate the group activity may prove too demanding. On the other hand without effective coordination policies the group search may not be effective. In this paper we propose and evaluate novel system-mediated techniques for coordinating a group search. These techniques allow for an effective division of labour across the group whereby each group member can explore a subset of the search space.We also propose and evaluate techniques to support automated sharing of knowledge across searchers in SCIR, through novel collaborative and complementary relevance feedback techniques. In order to evaluate these techniques, we propose a framework for SCIR evaluation based on simulations. To populate these simulations we extract data from TREC interactive search logs. This work represent the first simulations of SCIR to date and the first such use of this TREC data
Recommended from our members
Parallel computing in information retrieval - An updated review
The progress of parallel computing in Information Retrieval (IR) is reviewed. In particular we stress the importance of the motivation in using parallel computing for Text Retrieval. We analyse parallel IR systems using a classification due to Rasmussen [1] and describe some parallel IR systems. We give a description of the retrieval models used in parallel Information Processing.. We describe areas of research which we believe are needed
The FAIR Guiding Principles for scientific data management and stewardship
There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community
Tehnološki aspekti industrijske proizvodnje dječje hrane na bazi mlijeka
Idealna hrana za dojenčad - ženino mlijeko, nije uvijek praktički na raspolaganju ili ga nema u dovoljnoj količini. Kao najbolja i jedina zamjena tome mlijeku, odnosno kao sirovina za preradu u dojenačku i dječju hranu, služi kravlje mlijeko
The FAIR Guiding Principles for scientific data management and stewardship (vol 15, 160018, 2016)
Molecular Technology and Informatics for Personalised Medicine and Healt