6 research outputs found

    Intracellular calcium movements of boar spermatozoa during 'in vitro' capacitation and subsequent acrosome exocytosis follow a multiple-storage place, extracellular calcium-dependent model

    Get PDF
    This work analysed intracellular calcium stores of boar spermatozoa subjected to invitro' capacitation (IVC) and subsequent progesterone-induced acrosome exocytosis (IVAE). Intracellular calcium was analysed through two calcium markers with different physico-chemical properties, Fluo-3 and Rhod-5N. Indicative parameters of IVC and IVAE were also evaluated. Fluo-3 was located at both the midpiece and the whole head. Rhod-5N was present at the sperm head. This distribution did not change in any of the assayed conditions. Induction of IVC was concomitant with an increase in both head and midpiece Ca2+ signals. Additionally, while IVC induction was concurrent with a significant (p<0.05) increase in sperm membrane permeability, no significant changes were observed in O-2 consumption and ATP levels. Incubation of boar spermatozoa in the absence of calcium showed a loss of both Ca2+ labellings concomitantly with the sperm's inability to achieve IVC. The absence of extracellular calcium also induced a severe decrease in the percentage of spermatozoa exhibiting high mitochondrial membrane potential (hMMP). The IVAE was accompanied by a fast increase in both Ca2+ signalling in control spermatozoa. These peaks were either not detected or much lessened in the absence of calcium. Remarkably, Fluo-3 marking at the midpiece increased after progesterone addition to sperm cells incubated in a medium without Ca2+. The simultaneous addition of progesterone with the calcium chelant EGTA inhibited IVAE, and this was accompanied by a significant (p<0.05) decrease in the intensity of progesterone Ca2+-induced peak, O-2 consumption and ATP levels. Our results suggest that boar spermatozoa present different calcium deposits with a dynamic equilibrium among them and with the extracellular environment. Additionally, the modulation role of the intracellular calcium in spermatozoa function seems to rely on its precise localization in boar spermatozoa

    'In vitro' capacitation and acrosome reaction are concomitant with specific changes in mitochondrial activity in boar sperm: evidence for a nucleated mitochondrial activation and for the existence of a capacitation-sensitive subpopulational structure

    Get PDF
    The main scope of this manuscript is to analyse the dynamics of mitochondrial activity in boar sperm subjected to 'in vitro' capacitation (IVC) and subsequent progesterone-induced 'in vitro' acrosome reaction (IVAR). This was determined after analysis of the rhythm of O(2) consumption and concomitant changes in the mitochondria activity-specific JC-1 staining. Results showed that IVC, and especially IVAR, was concomitant with a peak in O(2) consumption (from 1.61 ± 0.08 nmol O(2)/min/10(7) viable sperm at 0 h of incubation to 2.62 ± 0.12 nmol O(2) /min/10(7) viable sperm after 5 min of IVAR induction). These results were accompanied by parallel changes in the mean intensity of JC-1 staining. Based on JC-1, mitochondrial activation followed a nucleated pattern, with specific, activation starting points at the midpiece from which mitochondrial activation was spread. Moreover, four separate sperm subpopulations were detected following the JC-1 orange-red/green ratio, and the observed changes in the mean JC-1 staining during IVC and IVAR were related to concomitant changes in both the orange-red/green JC-1 ratio and the percentage of sperm included in each subpopulation. All of these results indicate that IVC and the first minutes of IVAR are accompanied by a progressive increase in mitochondrial activity, which reached a peak coincidental with the achievement of IVAR. Moreover, results suggest the presence of separate sperm subpopulations, which show a different mitochondrial sensitivity to IVC and IVAR. Finally, mitochondrial activation, at least under JC-1 staining, seems to originate in concrete nucleation points at the midpiece, thus suggesting thus a well-coordinated pattern in boar-sperm mitochondrial activity modulation

    'In vitro' capacitation and acrosome reaction are concomitant with specific changes in mitochondrial activity in boar sperm: evidence for a nucleated mitochondrial activation and for the existence of a capacitation-sensitive subpopulational structure

    No full text
    The main scope of this manuscript is to analyse the dynamics of mitochondrial activity in boar sperm subjected to 'in vitro' capacitation (IVC) and subsequent progesterone-induced 'in vitro' acrosome reaction (IVAR). This was determined after analysis of the rhythm of O(2) consumption and concomitant changes in the mitochondria activity-specific JC-1 staining. Results showed that IVC, and especially IVAR, was concomitant with a peak in O(2) consumption (from 1.61 ± 0.08 nmol O(2)/min/10(7) viable sperm at 0 h of incubation to 2.62 ± 0.12 nmol O(2) /min/10(7) viable sperm after 5 min of IVAR induction). These results were accompanied by parallel changes in the mean intensity of JC-1 staining. Based on JC-1, mitochondrial activation followed a nucleated pattern, with specific, activation starting points at the midpiece from which mitochondrial activation was spread. Moreover, four separate sperm subpopulations were detected following the JC-1 orange-red/green ratio, and the observed changes in the mean JC-1 staining during IVC and IVAR were related to concomitant changes in both the orange-red/green JC-1 ratio and the percentage of sperm included in each subpopulation. All of these results indicate that IVC and the first minutes of IVAR are accompanied by a progressive increase in mitochondrial activity, which reached a peak coincidental with the achievement of IVAR. Moreover, results suggest the presence of separate sperm subpopulations, which show a different mitochondrial sensitivity to IVC and IVAR. Finally, mitochondrial activation, at least under JC-1 staining, seems to originate in concrete nucleation points at the midpiece, thus suggesting thus a well-coordinated pattern in boar-sperm mitochondrial activity modulation

    Calcium signaling system in plants

    No full text

    Gene expression during spermatogenesis and their regulation

    No full text
    corecore