9 research outputs found

    Picornavirus genome replication: Roles of precursor proteins and rate-limiting steps in oriI-dependent VPg uridylylation

    Get PDF
    The 5′ ends of all picornaviral RNAs are linked covalently to the genome-encoded peptide, VPg (or 3B). VPg linkage is thought to occur in two steps. First, VPg serves as a primer for production of diuridylylated VPg (VPg-pUpU) in a reaction catalyzed by the viral polymerase that is templated by an RNA element (oriI). It is currently thought that the viral 3AB protein is the source of VPg in vivo. Second, VPg-pUpU is transferred to the 3′ end of plus- and/or minus-strand RNA and serves as primer for production of full-length RNA. Nothing is known about the mechanism of transfer. We present biochemical and biological evidence refuting the use of 3AB as the donor for VPg uridylylation. Our data are consistent with precursors 3BC and/or 3BCD being employed for uridylylation. This conclusion is supported by in vitro uridylylation of these proteins, the ability of a mutant replicon incapable of producing processed VPg to replicate in HeLa cells and cell-free extracts and corresponding precursor processing profiles, and the demonstration of 3BC-linked RNA in mutant replicon-transfected cells. These data permit elaboration of our model for VPg uridylylation to include the use of precursor proteins and invoke a possible mechanism for location of the diuridylylated, VPg-containing precursor at the 3′ end of plus- or minus-strand RNA for production of full-length RNA. Finally, determinants of VPg uridylylation efficiency suggest formation and/or collapse or release of the uridylylated product as the rate-limiting step in vitro depending upon the VPg donor employed. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc

    A luciferase-based approach for measuring HBGA blockade antibody titers against human norovirus

    Get PDF
    Background: Noroviruses are the most common cause of viral gastroenteritis worldwide, yet there is a deficit in the understanding of protective immunity. Surrogate neutralization assays have been widely used that measure the ability of antibodies to block virus-like particle (VLP) binding to histo-blood group antigens (HBGAs). However, screening large sample sets against multiple antigens using the traditional HBGA blocking assay requires significant investment in terms of time, equipment, and technical expertise, largely associated with the generation of purified VLPs. Methods: To address these issues, a luciferase immunoprecipitation system (LIPS) assay was modified to measure the norovirus-specific HBGA blockade activity of antibodies. The assay (designated LIPS-Blockade) was validated using a panel of well-characterized homotypic and heterotypic hyperimmune sera as well as strain-specific HBGA blocking monoclonal antibodies. Results: The LIPS-Blockade assay was comparable in specificity to a standard HBGA blocking protocol performed with VLPs. Using time-ordered patient sera, the luciferase-based approach was also able to detect changes in HBGA blocking titers following viral challenge and natural infection with norovirus. Conclusion: In this study we developed a rapid, robust, and scalable surrogate neutralization assay for noroviruses that circumvented the need for purified VLPs. This LIPS-Blockade assay should streamline the process of large-scale immunological studies, ultimately aiding in the characterization of protective immunity to human noroviruses

    Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity

    Get PDF
    The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron’s evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis

    The unidirectional flagellum of R.sphaeroides Cloning and anlysis of regulatory, structural and motor components

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN009897 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Structural insights into calicivirus attachment and uncoating

    No full text
    The <i>Caliciviridae</i> family comprises positive-sense RNA viruses of medical and veterinary significance. In humans, caliciviruses are a major cause of acute gastroenteritis, while in animals respiratory illness, conjunctivitis, stomatitis, and hemorrhagic disease are documented. Investigation of virus-host interactions is limited by a lack of culture systems for many viruses in this family. Feline calicivirus (FCV), a member of the <i>Vesivirus</i> genus, provides a tractable model, since it may be propagated in cell culture. Feline junctional adhesion molecule 1 (fJAM-1) was recently identified as a functional receptor for FCV. We have analyzed the structure of this virus-receptor complex by cryo-electron microscopy and three-dimensional image reconstruction, combined with fitting of homology modeled high-resolution coordinates. We show that domain 1 of fJAM-1 binds to the outer face of the P2 domain of the FCV capsid protein VP1, inducing conformational changes in the viral capsid. This study provides the first structural view of a native calicivirus-protein receptor complex and insights into the mechanisms of virus attachment and uncoatin

    Molecular Mechanisms of Poliovirus Variation and Evolution

    No full text

    Genomic epidemiology of SARS-CoV-2 in a university outbreak setting and implications for public health planning

    Get PDF
    Whole genome sequencing of SARS-CoV-2 has occurred at an unprecedented scale, and can be exploited for characterising outbreak risks at the fine-scale needed to inform control strategies. One setting at continued risk of COVID-19 outbreaks are higher education institutions, associated with student movements at the start of term, close living conditions within residential halls, and high social contact rates. Here we analysed SARS-CoV-2 whole genome sequences in combination with epidemiological data to investigate a large cluster of student cases associated with University of Glasgow accommodation in autumn 2020, Scotland. We identified 519 student cases of SARS-CoV-2 infection associated with this large cluster through contact tracing data, with 30% sequencing coverage for further analysis. We estimated at least 11 independent introductions of SARS-CoV-2 into the student population, with four comprising the majority of detected cases and consistent with separate outbreaks. These four outbreaks were curtailed within a week following implementation of control measures. The impact of student infections on the local community was short-term despite an underlying increase in community infections. Our study highlights the need for context-specific information in the formation of public health policy for higher educational settings
    corecore