36 research outputs found
Specific heat of quasi-2D antiferromagnetic Heisenberg models with varying inter-planar couplings
We have used the stochastic series expansion (SSE) quantum Monte Carlo (QMC)
method to study the three-dimensional (3D) antiferromagnetic Heisenberg model
on cubic lattices with in-plane coupling J and varying inter-plane coupling
J_perp < J. The specific heat curves exhibit a 3D ordering peak as well as a
broad maximum arising from short-range 2D order. For J_perp << J, there is a
clear separation of the two peaks. In the simulations, the contributions to the
total specific heat from the ordering across and within the layers can be
separated, and this enables us to study in detail the 3D peak around T_c (which
otherwise typically is dominated by statistical noise). We find that the peak
height decreases with decreasing J_perp, becoming nearly linear below J_perp =
0.2J. The relevance of these results to the lack of observed specific heat
anomaly at the ordering transition of some quasi-2D antiferromagnets is
discussed.Comment: 7 pages, 8 figure
Phosphorous Efficiency and Tolerance Traits for Selection of Sorghum for Performance in Phosphorous-Limited Environments
Sorghum (Sorghum bicolor (L.) Moench) is widely cultivated in West Africa (WA) on soils with low phosphorus (P) availability. Large genetic variation for grain yield (GY) under low-P conditions was observed among WA sorghum genotypes, but information is lacking on the usefulness of P-tolerance ratios (relative performance in –P [no P fertilizer] vs. +P [with P fertilizer] conditions) and measures of P-acquisition and internal P-use efficiency as selection criteria for enhancing GY under low-P conditions. We evaluated 70 WA sorghum genotypes for GY performance under −P and +P conditions for 5 yr in two locations in Mali and assessed P acquisition (e.g., P content in biomass) and P-use efficiency (e.g., grain produced per unit P uptake) traits under −P and +P conditions in one site in 2010. Significant genetic variation existed for all P-tolerance ratios across multiple sites. Photoperiod-sensitive landrace genotypes showed significantly better P tolerance and less delay of heading under P-limited conditions compared with photoperiod-insensitive varieties. Genotypic correlations of P-tolerance ratios to GY under −P were moderate. Phosphorous acquisition and P-use efficiency traits independent of harvest index were of similar importance for GY under −P conditions in statistically independent trials. However grain-P and stover-P concentrations from one −P trial showed only weak correlations with GYs in statistically independent trials. Highest predicted gains for −P GY were obtained by theoretical index selection based on −P GY combined with P-use efficiency traits (e.g., low-grain P concentration). Such index selection is expected to achieve both increased sorghum productivity and P sustainability in the P-limited WA production systems