13 research outputs found

    Distribution of exchange energy in a bond-alternating S=1 quantum spin chain

    Full text link
    The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP is studied by single crystal inelastic neutron scattering. Parameters of the measured dispersion relation for magnetic excitations are compared to existing numerical results and used to determine the magnitude of bond-strength alternation. The measured neutron scattering intensities are also analyzed using the 1st-moment sum rules for the magnetic dynamic structure factor, to directly determine the modulation of ground state exchange energies. These independently determined modulation parameters characterize the level of spin dimerization in NTENP. First-principle DMRG calculations are used to study the relation between these two quantities.Comment: 10 pages, 10 figure

    QCD vacuum structure in strong magnetic fields

    Get PDF
    We study the response of the QCD vacuum to strong magnetic fields, using a potential model for the quark-antiquark interaction. We find that production of spin-polarized u-ubar pairs is energetically favorable for fields B > B_crit \sim 10 GeV^2. We contrast the resulting u-ubar condensate with the quark condensate which is present at zero magnetic field, and we estimate the corresponding magnetization as a function of B.Comment: 16 pages, LaTeX, 3 eps figures. v2: references added. v3: fixed typ

    On the Application of the Non Linear Sigma Model to Spin Chains and Spin Ladders

    Full text link
    We review the non linear sigma model approach (NLSM) to spin chains and spin ladders, presenting new results. The generalization of the Haldane's map to ladders in the Hamiltonian approach, give rise to different values of the Ξ\theta parameter depending on the spin S, the number of legs nℓn_{\ell} and the choice of blocks needed to built up the NLSM fields. For rectangular blocks we obtain Ξ=0\theta = 0 or 2πS2 \pi S depending on wether nℓn_{\ell}, is even or odd, while for diagonal blocks we obtain Ξ=2πSnℓ\theta = 2 \pi S n_{\ell}. Both results agree modulo 2π2 \pi, and yield the same prediction, namely that even ( resp. odd) ladders are gapped (resp. gapless). For even legged ladders we show that the spin gap collapses exponentially with nℓn_{\ell} and we propose a finite size correction to the gap formula recently derived by Chakravarty using the 2+1 NSLM, which gives a good fit of numerical results. We show the existence of a Haldane phase in the two legged ladder using diagonal blocks and finally we consider the phase diagram of dimerized ladders.Comment: 25 pages, Latex, 7 figures in postscript files, Proc. of the 1996 El Escorial Summer School on "Strongly Correlated Magnetic and Superconducting Systems". Some more references are adde

    Haldane-gap excitations in the low-H_c 1-dimensional quantum antiferromagnet NDMAP

    Full text link
    Inelastic neutron scattering on deuterated single-crystal samples is used to study Haldane-gap excitations in the new S=1 one-dimensional quantum antiferromagnet NDMAP, that was recently recognized as an ideal model system for high-field studies. The Haldane gap energies Δx=0.42\Delta_x=0.42 meV, Δy=0.52\Delta_y=0.52 meV and Δz=1.86\Delta_z=1.86 meV, for excitations polarized along the a, b, and c crystallographic axes, respectively, are directly measured. The dispersion perpendicular to the chain axis c is studied, and extremely weak inter-chain coupling constants Jy=1.8⋅10−3J_y=1.8\cdot 10^{-3} meV and Jx=3.5⋅10−4J_x=3.5\cdot 10^{-4} meV, along the a and b axes, respectively, are determined. The results are discussed in the context of future experiments in high magnetic fields.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Growth of Inflaton Perturbations and the Post-Inflation Era in Supersymmetric Hybrid Inflation Models

    Full text link
    It has been shown that hybrid inflation may end with the formation of non-topological solitons of inflaton field. As a first step towards a fully realistic picture of the post-inflation era and reheating in supersymmetric hybrid inflation models, we study the classical scalar field equations of a supersymmetric hybrid inflation model using a semi-analytical ansatz for the spatial dependence of the fields. Using the minimal D-term inflation model as an example, the inflaton field is evolved using the full 1-loop effective potential from the slow-rolling era to the U(1)_{FI} symmetry-breaking phase transition. Spatial perturbations of the inflaton corresponding to quantum fluctuations are introduced for the case where there is spatially coherent U(1)_{FI} symmetry breaking. The maximal growth of the dominant perturbation is found to depend only on the ratio of superpotential coupling \lambda to the gauge coupling g. The inflaton condensate fragments to non-topological solitons for \lambda/g > 0.09. Possible consequences of non-topological soliton formation in fully realistic SUSY hybrid inflation models are discussed.Comment: 27 pages LaTeX, 8 figures. Additional references and discussio

    Spin-Charge Separation in the t−Jt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the t−Jt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (∝ή\propto \sqrt{\delta}, ÎŽ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Right-handed sneutrinos as curvatons.

    Get PDF
    We consider the possibility that a right-handed sneutrino can serve as the source of energy density perturbations leading to structure formation in cosmology. The cosmological evolution of a coherently oscillating condensate of right-handed sneutrinos is studied for the case where reheating after inflation is due to perturbative inflaton decays. For the case of Dirac neutrinos, it is shown that some suppression of Planck scalesuppressed corrections to the right-handed neutrino superpotential is necessary in order to have sufficiently late decay of the right-handed sneutrinos. cH2 corrections to the sneutrino mass squared term must also be suppressed during inflation (ucu&0.1), in which case, depending on the magnitude of ucu during inflation, a significantly blue ~if c.0) or red ~if c,0) perturbation spectrum is possible. R parity must also be broken in order to ensure that the Universe is not overclosed by the lightest supersymmetric particles from the late decay ~at temperatures 1210 MeV) of the right-handed sneutrino condensate. The resulting expansion rate during inflation can be significantly smaller than in conventional supersymmetric inflation models ~as low as 106 GeV is possible!. For the case of Majorana neutrinos, a more severe suppression of Planck-suppressed superpotential corrections is required. In addition, the Majorana sneutrino condensate is likely to be thermalized before it can dominate the energy density, which would exclude the Majorana right-handed sneutrino as a curvaton

    Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity

    No full text
    Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring ‘nontoxic’ provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F2 mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F2 plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties

    Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity

    No full text
    Current efforts to grow the tropical oilseed crop Jatropha curcas L. economically are hampered by the lack of cultivars and the presence of toxic phorbol esters (PE) within the seeds of most provenances. These PE restrict the conversion of seed cake into animal feed, although naturally occurring ‘nontoxic’ provenances exist which produce seed lacking PE. As an important step towards the development of genetically improved varieties of J. curcas, we constructed a linkage map from four F2 mapping populations. The consensus linkage map contains 502 codominant markers, distributed over 11 linkage groups, with a mean marker density of 1.8 cM per unique locus. Analysis of the inheritance of PE biosynthesis indicated that this is a maternally controlled dominant monogenic trait. This maternal control is due to biosynthesis of the PE occurring only within maternal tissues. The trait segregated 3 : 1 within seeds collected from F2 plants, and QTL analysis revealed that a locus on linkage group 8 was responsible for phorbol ester biosynthesis. By taking advantage of the draft genome assemblies of J. curcas and Ricinus communis (castor), a comparative mapping approach was used to develop additional markers to fine map this mutation within 2.3 cM. The linkage map provides a framework for the dissection of agronomic traits in J. curcas, and the development of improved varieties by marker-assisted breeding. The identification of the locus responsible for PE biosynthesis means that it is now possible to rapidly breed new nontoxic varieties
    corecore