49,776 research outputs found

    The tensor structure on the representation category of the Wp\mathcal{W}_p triplet algebra

    Full text link
    We study the braided monoidal structure that the fusion product induces on the abelian category Wp\mathcal{W}_p-mod, the category of representations of the triplet WW-algebra Wp\mathcal{W}_p. The Wp\mathcal{W}_p-algebras are a family of vertex operator algebras that form the simplest known examples of symmetry algebras of logarithmic conformal field theories. We formalise the methods for computing fusion products, developed by Nahm, Gaberdiel and Kausch, that are widely used in the physics literature and illustrate a systematic approach to calculating fusion products in non-semi-simple representation categories. We apply these methods to the braided monoidal structure of Wp\mathcal{W}_p-mod, previously constructed by Huang, Lepowsky and Zhang, to prove that this braided monoidal structure is rigid. The rigidity of Wp\mathcal{W}_p-mod allows us to prove explicit formulae for the fusion product on the set of all simple and all projective Wp\mathcal{W}_p-modules, which were first conjectured by Fuchs, Hwang, Semikhatov and Tipunin; and Gaberdiel and Runkel.Comment: 58 pages; edit: added references and revisions according to referee reports. Version to appear on J. Phys.

    Microstructure control during twin roll casting of an AZ31 magnesium alloy

    Get PDF
    The existing twin roll casting technique for magnesium alloys suffers heterogeneity in both microstructure and chemistry and downstream processing is required to improve the strip quality, resulting in cost rise. In the present work, twin roll casting was carried out using an AZ31 magnesium alloy, with the application of intensive shearing melt conditioning prior to casting. The effect of process parameters such as pouring temperature and casting speed on microstructure control during casting and subsequent downstream processing was studied. Experimental results showed that the melt conditioning treatment allowed the production of AZ31 strips with uniform and refined microstructure free of centreline segregations. It was also shown that an optimized combination of pouring temperature and casting speed, in conjunction with a strip thickness control operation, resulted in uniformly distributed stored energies due to enhanced plastic deformation, which promoted recrystallization during casting and subsequent heat treatment. Strips prepared by twin roll casting and homogenization developed similar microstructural features to those prepared by twin roll casting followed by lengthy downstream processing by homogenization, hot rolling and annealing and displayed a weaker basal texture, exhibiting a potentially better formability.The EPSRC (UK

    The Radon transform and its dual for limits of symmetric spaces

    Full text link
    The Radon transform and its dual are central objects in geometric analysis on Riemannian symmetric spaces of the noncompact type. In this article we study algebraic versions of those transforms on inductive limits of symmetric spaces. In particular, we show that normalized versions exists on some spaces of regular functions on the limit. We give a formula for the normalized transform using integral kernels and relate them to limits of double fibration transforms on spheres

    Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    Full text link
    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities for characterizing and designing nonlinear nanodevices.Comment: 11 pages, 14 figure

    Dual function additives: A small molecule crosslinker for enhanced efficiency and stability in organic solar cells

    Get PDF
    A bis‐azide‐based small molecule cross­linker is synthesized and evaluated as both a stabilizing and efficiency‐boosting additive in bulk heterojunction organic photovoltaic cells. Activated by a non­invasive and scalable solution processing technique, polymer:fullerene blends exhibit improved thermal stability with suppressed polymer skin formation at the cathode and frustrated fullerene aggregation on ageing, with initial efficiency increased from 6% to 7%

    The mechanics of inelastic buckling using a Shanley-like model

    Get PDF
    This paper presents a study of the mechanics of inelastic buckling using a Shanley-like simplified column model. The model is an extension of the original Shanley model with multiple springs and two dampers. The inclusion of damping enables the dynamic response of the model under constant loading to be captured. The model has been evaluated against the tangent-modulus and reduced-modulus critical buckling loads, and has been found effective in representing the progressive change in the regions of loading and unloading during inelastic buckling. It is also able to simulate the extreme situations of inelastic buckling by varying the ratio of the two damping coefficients. It is seen that high rotational damping, relative to vertical damping, causes the buckling to move towards the reducedmodulus buckling load at much lower deflections than when the relationship is reversed

    Meromorphic open-string vertex algebras

    Full text link
    A notion of meromorphic open-string vertex algebra is introduced. A meromorphic open-string vertex algebra is an open-string vertex algebra in the sense of Kong and the author satisfying additional rationality (or meromorphicity) conditions for vertex operators. The vertex operator map for a meromorphic open-string vertex algebra satisfies rationality and associativity but in general does not satisfy the Jacobi identity, commutativity, the commutator formula, the skew-symmetry or even the associator formula. Given a vector space \mathfrak{h}, we construct a meromorphic open-string vertex algebra structure on the tensor algebra of the negative part of the affinization of \mathfrak{h} such that the vertex algebra struture on the symmetric algebra of the negative part of the Heisenberg algebra associated to \mathfrak{h} is a quotient of this meromorphic open-string vertex algebra. We also introduce the notion of left module for a meromorphic open-string vertex algebra and construct left modules for the meromorphic open-string vertex algebra above.Comment: 43 pape

    Maximum a Posteriori Adaptation of Network Parameters in Deep Models

    Full text link
    We present a Bayesian approach to adapting parameters of a well-trained context-dependent, deep-neural-network, hidden Markov model (CD-DNN-HMM) to improve automatic speech recognition performance. Given an abundance of DNN parameters but with only a limited amount of data, the effectiveness of the adapted DNN model can often be compromised. We formulate maximum a posteriori (MAP) adaptation of parameters of a specially designed CD-DNN-HMM with an augmented linear hidden networks connected to the output tied states, or senones, and compare it to feature space MAP linear regression previously proposed. Experimental evidences on the 20,000-word open vocabulary Wall Street Journal task demonstrate the feasibility of the proposed framework. In supervised adaptation, the proposed MAP adaptation approach provides more than 10% relative error reduction and consistently outperforms the conventional transformation based methods. Furthermore, we present an initial attempt to generate hierarchical priors to improve adaptation efficiency and effectiveness with limited adaptation data by exploiting similarities among senones
    corecore