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Abstract 

This paper presents a study of the mechanics of inelastic buckling using a 

Shanley-like simplified column model.  The model is an extension of the 

original Shanley model with multiple springs and two dampers.  The inclusion 

of damping enables the dynamic response of the model under constant 

loading to be captured.  The model has been evaluated against the tangent-

modulus and reduced-modulus critical buckling loads, and has been found 

effective in representing the progressive change in the regions of loading and 

unloading during inelastic buckling.  It is also able to simulate the extreme 

situations of inelastic buckling by varying the ratio of the two damping 

coefficients.  It is seen that high rotational damping, relative to vertical 

damping, causes the buckling to move towards the reduced-modulus buckling 

load at much lower deflections than when the relationship is reversed. 

Notation 

F  critical buckling load  

I  second moment of area of the column cross section  

l  column length  

E  Young’s  modulus   

t
E  tangent modulus 

r
E  reduced modulus 

P  applied load 

sij
F  reaction force on spring j  ( 1,  j n  from column centre to edge) on 

either left-hand side ( 1i  ) or right-hand side ( 2i  ) 

cv
F  reaction force on the vertical damper 

0
  initial imperfection 

L  model length  
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B  model width 

cr
M  reaction moment on the rotational damper 

v
C  damping coefficient of the vertical damper (Ns/mm) 

r
C  damping coefficient of the rotational damper (Nmms) 

u  vertical moment 

  rotation 

u  velocity of u  

  velocity of   

k  stiffness at linear-elastic stage 

t
k  stiffness at plastic stage, set to be 25% of k  

pF  spring force at proportional limit 

px  spring deformation at proportional limit (
p px F k ) 

UL
F  spring force when unloading starts 

UL
x  spring deformation when unloading starts 

t
P  tangent-modulus load 

r
P  reduced-modulus load 

  an arbitrary small rotation 

sijF  additional 
sij
F  caused by the rotation   

ijx  additional deformation of spring j  ( 1,  j n  from column centre to edge) 

on either left-hand side ( 1i  ) or right-hand side ( 2i  ) caused by the 

rotation   

d
R  relative damping ratio 

 

Key words: Columns, Fire Engineering, Mathematical Modelling  
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1 Introduction 

Simplified models are often very efficient in clarifying structural behaviour, in 

particular when the underlying mechanics is of interest.  For column buckling 

in the inelastic range, the model due to Shanley (1947) is perhaps the best 

known, and probably the most effective, discrete model.  Shanley reconciled 

the controversy between the tangent-modulus (Engesser 1889) and the 

reduced-modulus (Considère 1891) theories, and pointed out the non-

uniqueness of the critical buckling loads in inelastic buckling.  This 

phenomenon is well demonstrated by Shanley’s simple column model, which 

has been used, occasionally in modified form, by other authors in studies 

related to inelastic buckling (for example Genna & Symonds 1987, Massin et 

al. 1999, Corona 2001 and Little 2004).  

The use of very slender concrete and composite columns is rapidly growing in 

buildings, especially in non-seismic regions such as the UK.  Concrete, the 

main material of such columns, has a relatively newly-found property at high 

temperatures, defined either as Transient Strain (TS) or as Load-Induced 

Thermal Strain (LITS). (Anderberg & Thelanderson 1976, Khoury et al. (1985a, 

b, 1996, 2006) Schneider & Horvath 2003)  Although a slender concrete or 

composite column subject to an accidental fire is surely vulnerable to TS, the 

way in which the phenomenon affects buckling in such cases is not known 

and in need of investigation.  In order to investigate the problem in terms of its 

underlying mechanics, as a preliminary to a more detailed analysis of 

concrete columns in fire, a simplified column model has therefore been used.  

In this paper, the modified Shanley model is presented.  The original two-



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

 5 

spring discrete model is extended by adding more springs, in order to create a 

more continuous stress distribution through the cross-section.  Since the 

relative-rate dependency of the inelastic buckling behaviour is of interest, the 

model has been set up with two dampers, one for each degree of freedom.  

The effect of the relative rates of the two DoFs has been examined by varying 

the ratio of the damping coefficients.   

2 Historical review of inelastic buckling theories 

If imperfection effects are set aside, the strength of a column depends on its 

geometry (slenderness ratio) and its material properties (stiffness and 

strength).  Very slender columns fail by buckling when the material is still 

linear-elastic (elastic buckling), and the classic Euler formula is applicable in 

the determination of the critical buckling load.  In contrast, very stocky 

columns fail by yielding and crushing of the material, and hence their strength 

depends solely on the ultimate compressive strength of the material; no 

consideration of buckling or stability is necessary.  Between these extremes, 

for columns with intermediate slenderness, buckling occurs after the material 

has become plastic but before it crushes, which is known as inelastic buckling 

(Gere & Timoshenko 1997).  In this case, the simple elastic buckling solution 

is no longer valid, and the inelastic behaviour of the material must be taken 

into account.  The slenderness of composite columns very often lies in the 

‘intermediate’   range,   and   so   their   global   failure   mode   will commonly be 

inelastic buckling.  

Various inelastic buckling theories have been published since the late 1880s, 

including the tangent-modulus theory, the reduced-modulus theory and 
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Shanley’s  theory  (Shanley  1947,  Bleich  1952,  Bazant & Cedolin 1991).  Both 

the tangent-modulus and reduced-modulus theories assume that inelastic 

buckling has characteristics analogous to elastic buckling.  It is assumed that 

the column fails by buckling at a constant load from a neutrally stable 

equilibrium state.  This critical load is determined by generalizing Euler’s  

formula with changed elastic modulus.  

In the tangent-modulus theory,  Young’s  modulus   E  is replaced by a tangent 

modulus 
t

E , which is the gradient of the compressive stress-strain curve at 

the critical stress (Gere & Timoshenko 1997). This theory oversimplifies 

inelastic buckling by using a unique tangent modulus.  In reality, the tangent 

modulus depends on the concurrent strain levels, which vary through the 

cross-section and may even be subject to elastic strain reversal on the convex 

side of the member due to bending. 

The reduced-modulus theory attempts to mitigate the error of neglecting 

strain-rate reversal on the convex side of a deflected column in the tangent-

modulus theory. It considers both increasing strain with tangent modulus 
t

E  

on the concave side, and decreasing strain with  Young’s  modulus   E  on the 

convex side when buckling occurs.  An effective modulus (known as the 

reduced modulus 
r

E ), which lies between E  and 
t

E , is introduced to replace 

t
E  in the tangent-modulus formula (Bazant & Cedolin 1991).  

The three basic column formulas may be written as follows (assuming pinned 

ends and zero eccentricity): 
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Euler 
2 2

e
F EI l  (1) 

Tangent modulus 
2 2

t t
F E I l  (2) 

Reduced modulus 
2 2

r r
F E I l  (3) 

However, whether a perfect column will remain straight until its deflection 

suddenly bifurcates at a certain critical load (shown as the straight horizontal 

lines in Fig. 1) in the inelastic range is questionable.  Shanley (1947) showed 

from tests and a simplified mathematical analysis that, unlike elastic buckling, 

inelastic buckling does not have a unique critical load.  The column starts to 

buckle at the tangent-modulus critical load, and the buckling proceeds 

simultaneously with further increase of axial load, but the load does not 

exceed the reduced-modulus load, shown as the rising curve in Fig. 1.  

It is also logical to state that the manner of inelastic buckling significantly 

depends on the relative rates of change of the axial and bending strains.  

When a column starts to deflect laterally the strains through a cross-section 

due to axial compression and to bending are superposed.  If the axial strain at 

all points through the cross-section is imposed more rapidly than the bending 

strain then it is possible for buckling to occur without strain reversal, as 

described in the tangent-modulus theory. On the other hand, if the column 

deflects so rapidly that only the high stiffness given by reversal can keep the 

load constant, then what is described as the reduced-modulus theory would 

apply.  These two theories give the two practical extremes of inelastic 

buckling.  Between these two extremes, the combinations of compression and 

bending are infinitely variable, explaining why no unique critical load exists for 

inelastic buckling. 
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3 Numerical analysis with Shanley-like column model 

Although in practice engineers tend to use the over-conservative tangent-

modulus theory to obtain simple and safe solutions to inelastic buckling 

problems,   theoretically   only   Shanley’s   theory   correctly   describes the 

mechanics of the process.  Shanley (1947) demonstrated his theory using a 

simplified column model consisting of two rigid legs and an elastic-plastic 

hinge composed of two axial elements.  A  modification   of   Shanley’s  model  

has been used as a basic model in this research.  

3.1 Geometry 

Shanley’s  model  may  be   represented by a rigid cantilever supported by two 

identical “springs”, as shown in Fig. 2.  This is a direct analogue of the simple 

column of twice the length which is also shown in the figure.  It has two 

degrees of freedom: 

 Vertical movement u , which is the mean vertical movement of the two 

springs; 

 Rotation  , which is proportional to the difference in displacement of 

the springs. 

Shanley’s  model   is   useful for general investigation of buckling, but is over-

simplified for a rational numerical analysis of the problems addressed 

previously.  Therefore, this basic model has been modified and extended as 

shown in Fig. 3. 

Since inelastic buckling is significantly rate-related, two dampers, one vertical 

and one rotational, were added to the basic model.  They respectively control 

the rates of change of the two degrees of freedom u  and  .  They damp the 
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 9 

movement of the model in a controlled manner, which enables it to achieve 

the full buckling load-deflection equilibrium path rather than a sudden 

bifurcation when the column fails by buckling.  In addition, by changing the 

values of the two damping coefficients the two extreme situations of inelastic 

buckling (bifurcation at the tangent-modulus or reduced-modulus loads) may 

be simulated. 

The two-spring model was extended to a multi-spring model, representing the 

material continuity through the cross-section.  The axial deformation of each 

spring is consistent with the linear strain-gradient assumption, and hence the 

mean and differential displacements of each pair of springs at the equivalent 

locations on either side of the central axis are still functions of the two DoFs u  

and  .  In this particular analysis the springs are all identical, having the same 

force-displacement curves and representing the same material, but the force 

level of each spring can differ from the others at any given time, depending on 

the global deformation and the force equilibrium of the column.  For instance, 

some springs may already be in the plastic range when the others are still 

linear-elastic, and some may already have started unloading while others 

continue to load.  A bilinear stress-strain curve with elastic strain reversal has 

been used in this analysis. Each spring characteristic can represent any 

material, either elastic or elasto-plastic, but the distribution of the spring 

displacements must remain linear. 

In  Shanley’s  mathematical  analysis,  the  model  is  initially  perfectly  symmetric,  

with the load perfectly central.  It is then assumed to start to rotate at the 

tangent-modulus buckling load, but the axial load continues to increase 
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thereafter.  Shanley makes these assumptions because the purpose of his 

analysis is only to support his previous test results.  However, for the purpose 

of this research, these assumptions have been considered as over-simplified 

and hence inappropriate.  Without assuming the model to start to rotate at a 

certain load, the introduction of an initial imperfection as an arbitrary small 

rotation 
0

  was necessary to enable the analysis to guarantee numerical 

solutions.  This also pre-defines the direction of deflection. 

3.2 Mathematical model 

Dynamic numerical analysis was conducted using a program based on the 

multi-spring model. The equations of motion were written for the static and 

dynamic forces and moments caused by the imposed load and reaction forces 

on the springs and dampers: 

2

1 1

0:         

n

sij cv

i j

F P F F
 

     (4) 

   0 2 1

1

0 :       
2

n

s j s j cr

j

j B
M P L F F M

n
  



       (5) 

The sign convention used in this analysis for the positive directions of force 

and moment is shown in Fig. 3. 

The reaction force and moment applied to the two dampers derive from the 

velocities of the two DoFs: 

cv v
F C u    (6) 

cr r
M C     (7) 

Substituting Equations (6) and (7) into Equations (4) and (5) and rewriting: 
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2

1 1

n

sij v

i j

u P F C
 

 
  
 

  (8) 

   0 2 1

12

n

s j s j r

j

B
P L j F F C

n
   



 
    
 

  (9) 

According to the linear strain-gradient assumption the cross-section remains 

plane, and so the mean and differential displacements (and velocities) of each 

pair of springs at the equivalent locations on opposite sides are functions of u  

(u ) and   ( ): 

1 2

1

2 1

2

1 2

1

2 1

2

2
2

                 

2

2
2

                 

2

j j

j

j j

j

j j

j

j j

j

x x
jBu

x u
n

x x
jB

x ujB
n

n

x x
jBu

x u
n

x x
jB

x ujB
n

n



 



 

 
      
    

 


 
      
    

 


 
  

   

 (10) 

A bilinear force-deformation relationship, which allows elastic unloading, is 

applied to the springs in this preliminary stage (see Fig. 4). It may be written in 

the generalized form: 

s
F x    (11) 

The formulation of   and   differs at various loading stages, as listed in 

Table 1. In the program, the loading stage of each spring is defined according 

to its deformation, velocity and force, all at the previous time step. 

The tangent modulus 
t
k  is defined to be 25% of the elastic modulus k .  The 

proportional limit 
p

F  of the bilinear force-deformation curve is defined as 
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0.6 2
t
P n  to ensure that the springs become plastic before overall buckling of 

the model occurs in the inelastic range.  The calculation of the theoretical 

tangent-modulus buckling load 
t
P  is described in detail in Section 3.3.1. 

A constant force is imposed on the model. This simulates the application of a 

gravity load on top of the column, in a single step but without impact, so that 

no initial velocity or acceleration is induced.  In the initial time step, the 

unbalanced external and internal forces (whose difference is identical to the 

damping force) induce velocity, causing the model to move. The model 

continues to deform gradually through successive time steps until a new static 

equilibrium is reached, and this equilibrium position is recorded. The same 

procedure is repeated for successively higher loads, until the rotation of the 

model is seen to diverge, indicating its final failure by buckling.  Plotting all the 

loads against the corresponding rotations   recorded at equilibrium gives the 

full equilibrium path. Relaxation with explicit time integration is used for the 

numerical algorithm.  The calculation procedure within each time step is 

illustrated in Fig. 5 and described below: 

The two DoFs 
t
u  and 

t
  at time t  may be calculated from their values 

t t
u 

 

and 
t t

 
 and their velocities 

t t
u  and 

t t
 
  at the end of the previous time step, 

as they are assumed to increase linearly with time within each time increment 

t .  The deformation of each spring 
t
x  and its velocity at the end of the 

previous time step 
t t
x   are then calculated from 

t
u , 

t
 , 

t t
u   and 

t t
 
  by 

making use of the linear strain-gradient assumption (Eq. (10)). The loading 

stage of the spring on the force-deformation curve (Fig. 4) is then detected 
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according to its force
,s t t

F 
, deformation 

t t
x 

 and velocity 
t t
x   at the end of 

the previous time step. Unloading is detected when the spring velocity x  is 

seen to alter from positive to negative, and the corresponding force 
UL
F  and 

deformation 
UL
x  are recorded. The coefficients 

t
  and 

t
  are then calculated 

for the current loading stage, from the corresponding formulae in Table 1, 

which enables the spring-force 
s
F  to be determined from Eq. (11).  The same 

procedure is repeated for all of the springs. Finally, the velocities of the two 

DoFs  
t
u  and 

t
  are calculated from Equations (8) and (9) for use in the next 

time step. 

3.3 Calculation of theoretical buckling loads 

As mentioned in Section 2, the tangent-modulus and reduced-modulus loads 

should respectively be the lower and upper boundaries of the buckling load 

path of a column, as shown in Fig. 1, and therefore they are used to validate 

the results of the numerical analysis on the Shanley-like model. The 

calculation of these two theoretical buckling loads of the multiple-spring model 

according to the corresponding theories has been programmed and is 

described in this section.  

3.3.1 Calculation of tangent-modulus buckling load 
t
P  

In the tangent-modulus theory, the column is assumed to remain straight and 

in stable equilibrium until the tangent-modulus critical buckling load 
t
P  is 

reached.  At 
t

P P , the column is in neutral equilibrium in either the straight, 

or an arbitrary slightly deflected, position.  Beyond this critical load, the 
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column will lose its stability and collapse by buckling under the slightest 

disturbance.  In accordance with this theory, the tangent-modulus load 
t
P  of 

the multiple-spring model is calculated.  When the applied load reaches 
t
P , 

the model suddenly bifurcates from its vertical static equilibrium position to a 

deflected static equilibrium position, by means of a small rotation   whilst the 

load remains constant, as shown in Fig. 6.  It should be noted that, since no 

dynamic aspect is involved here, the dampers are excluded.  The moment 

equilibrium equations of the model at these two possible equilibrium positions 

are written as:   

 

 

 

21 11

22 12

2 1

When vertical:   0

2
So that        0 1

2
                      2

                                      

2
                      

                                

s s

s s

s j s j

M

B
F F

n

B
F F

n

B
F F j

n



   

   

   





 2 1

      

2
                      

s n s n

B
F F n

n
   



 

 2 1

1

or                0    
2

n

s j s j

j

Bj
F F

n

     (12) 
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   

   

21 11 21 11

22 12 22 12

When deflected to :    0

2 2
So that   1 1

2 2
                     2 2

                                                

                   

t s s s s

s s s s

M

B B
P L F F F F

n n

B B
F F F F

n n







        

        







   

   

2 1 2 1

2 1 2 1

2 2
  

                                                

2 2
                     

s j s j s j s j

s n s n s n s n

B B
F F j F F j

n n

B B
F F n F F n

n n

        

        



 

   2 1 2 1

1 1

or             
2 2

n n

t s j s j s j s j

j j

Bj Bj
P L F F F F

n n


 

         (13) 

Substituting Eq. (12) into (13) gives: 

 2 1

1

 
2

n

t s j s j

j

Bj
P L F F

n




     (14) 

When the column is straight at 
t

P P , the applied force 
t
P  is uniformly 

distributed among all the springs, and so the reaction force on each spring is 

identical and equal to 2
t
P n ; the spring stiffnesses at this stage are all equal.  

They are in fact the tangent modulus 
t
k  of the force-deformation curve of 

each at the corresponding force value in the plastic stage; this will be referred 

to as 
1
k .  When the model starts to rotate at this load, then since the rotation 

occurs from the straight position and is very small, it is assumed that no strain 

reversal takes place in the springs on the left-hand side of Fig. 6.  It is also 

assumed that the stiffnesses of the springs remain the same, although for a 

nonlinear force-displacement curve they should change as a group and vary 

slightly from one another due to the contribution of the additional spring forces 

s
F  resulting from the rotation.  Since a bilinear force-deformation relationship, 
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as shown in Fig. 4, applies to the springs, the tangent modulus 
t
k  is uniquely 

defined, and so the additional spring forces 
s
F  resulting from the rotation are 

given by 

sij t ij
F k x    (15) 

Substituting Eq. (15) into (14) gives 

 2 1

1

 
2

n

t t j j

j

Bj
P L k x x

n




     (16) 

Since the deformations of the springs should vary linearly across the cross-

section in order to fulfil the assumption that plane cross-sections remain plane, 

the rotation   has the following relationship with the resulting additional 

deformations of the springs: 

2 1j j
x x

B
j

n


 





  (17) 

Substituting Eq. (17) into (16) gives 

2
2

2
1 1

  
2 2

n n
t

t t

j j

k BB Bj
P L k j j

n n n

 
 

      
 

 
   (18) 

Eq. (18) has two unknowns   and 
t
P , and the two solutions are: 

2

2
1

2

0                            (i)

             (ii)
2

n

jt

t

j
k B

P
L n





 


 





 (19) 

Solution (i) implies that, as long as the column remains straight, it is always in 

equilibrium under any load.  Solution (ii) gives the value of the tangent-



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

 17 

modulus critical buckling load, under which the column is in equilibrium with a 

deflected shape for which 0  .  

It should be noted that the use of the bilinear force-deformation relationship 

(Fig. 4) simplifies this calculation due to the uniqueness of 
t
k , whilst when the 

nonlinear curve is used an iterative procedure is needed to determine the 

value of 
t
k .  This procedure involves, firstly, estimating the value of 

t
P .  This 

trial value, say 
1
P , is a little larger than the proportional limit.  Then uniformly 

divide 
1
P between the springs, allocating 

1s
F  to each.  The tangent modulus 

t
k  

is then determined from the force-deformation curve, as the gradient at 
1s

F . 

Substituting 
t
k  into Eq. (19), a second estimate of 

t
P , say 

2
P , is made.  If 

2
P  is 

close enough to 
1
P , then it is accepted to be the tangent-modulus buckling 

load; otherwise, this iteration needs to be repeated until an acceptable 

agreement between 
1
P  and 

2
P  is obtained.  

3.3.2 Calculation of reduced-modulus buckling load 
r
P  

It should be noted that calculation of the tangent-modulus buckling load is 

solely based on the moment equilibrium of the model; its force equilibrium is 

not checked.  Since unloading of springs on the left-hand side of Fig. 6 is 

ignored, the incremental reaction forces of the springs 
sij
F  are all 

compressive, which results in an increase in the sum of the spring forces 

whilst the applied load is assumed to remain constant.  In this case the model 

will fail to maintain its force equilibrium. The reduced-modulus theory attempts 

to mitigate this contradiction of the tangent-modulus theory by taking into 
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account the unloading on the concave side of the column whilst still assuming 

that the column fails by buckling at a constant critical load, at the so-called 

reduced-modulus buckling load 
r
P . The vertical and deflected equilibrium 

positions at this critical load are illustrated in Fig. 7.  The force and moment 

equilibrium equations of the model in these two equilibrium positions can be 

stated as 

0               0sijF F      (20) 

 2 1

1

0                 
2

n

r s j s j

j

Bj
M P L F F

n




        (21) 

However, the additional deformation 
ijx  and force 

s
F  may be negative 

(compression is positive) for those springs which unload. Therefore, it is 

essential to determine the position of the axis of rotation in order to find out 

which springs unload whilst the others continue to load.  An iterative 

procedure is needed: firstly, estimate the value of the distance a  between the 

neutral axis and the centre-line of the model. This estimate should start from 

the half model-width 2B  and then decrease towards zero. Since the 

deformations of the springs distribute linearly across the cross-section, they 

can be determined as long as a  is known.  

 ij
x f a      (22) 

Depending on their relative position to the neutral axis, the spring force 

increments 
s
F  are: 

For the springs to the left  of the rotation axis:   

For the springs to the right of the rotation axis:  

sij ij

sij t ij

F k x

F k x

  

  
 (23) 
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Substituting Eq. (22) into (23) gives: 

 
 

For the springs to the left  of the rotation axis:   

For the springs to the right of the rotation axis:  

sij

sij t

F kf a

F k f a





  

  



  (24) 

The additional forces 
s
F  on all the springs are summed.  If Eq. (20) is 

satisfied, then the estimate of a  is accepted; otherwise, this iteration needs to 

be repeated.  After the position of the axis of rotation has been determined, 

substituting the value of 
s
F  back into Eq. (21) and eliminating   from both 

sides of the equation finally gives the value of the reduced-modulus buckling 

load 
r
P .  

4 Results & discussion 

4.1 An example model 

The results of the numerical analyses on the Shanley-like model are 

presented in Figures 8-17.  It should be noted that the results presented in 

this section are all taken from a single example with the specifications listed in 

Table 2.  The tangent-modulus and reduced-modulus critical buckling loads of 

this particular model are 96.25 N and 169.5 N, respectively. The position of 

the axis of rotation needed for calculation of the reduced-modulus buckling 

load lies between the 3rd and 4th springs on the left-hand side of Fig. 7, with a  

= 1.8 mm.  

Figures 8(a)-(h) to 15(a)-(h) plot selected structural responses of the model 

under the following applied loads: (a) 70 N, (b) 96.25 N (
t
P ), (c) 97 N, (d) 98 N, 

(e) 160 N, (f) 169 N, (g) 169.5 N (
r
P ) and (h) 170 N.  Fig. 8 shows the 
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development with time of the resultant of the reaction forces on all the springs 

sij
F , the reaction force at the vertical damper 

cv
F , and the reaction moment at 

the rotational damper 
cr

M , under the constant applied load P .  Figures 9-12 

illustrate the development of the two DoFs u  and   and their velocities u and 

  during the same period of time.  The deformation 
ij
x  and velocity 

ij
x  of 

each spring, and their force-deformation relationship 
sij ij
F x  during the same 

period are respectively shown in Figures 13-15.  

The grey straight lines in Fig. 8 illustrate the constant loading imposed on the 

model.  According to Eq. (4), the static external force P  should be balanced 

by the dynamic internal forces 
sij
F  and 

cv
F .  In the initial step, the reaction 

forces 
sij
F  on the springs are zero, so algebraically 

cv
F must be identical to P  

in order to maintain the equilibrium of the model.  This physically induces a 

velocity ( u ) to the model and initiates its vertical movement u .  This 

corresponds to the initial increase from zero of u , shown in Fig. 9, and the 

large initial value of u  in Fig. 10 in all the loading cases.  

Compared to the rapid initial increase in u , the initial velocity of the rotation   

is very modest, undergoing a gradual increases and reaching a peak value, 

as shown in Fig. 12.  This can easily be explained by Eq. (5), according to 

which the initial value of   should be equal to
0 r

P L C , whose value is limited 

by the very small magnitude of the initial imperfection 
0

 .  

When subject to any load smaller than the reduced-modulus buckling load 
r
P , 

the motion of the model always stabilises after a certain period of time, 
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depending on the magnitude of the applied force.  As shown in Fig. 8, the total 

spring force 
sij
F  approaches the applied force P , whilst the reaction force 

cv
F  on the vertical damper eventually returns to zero. This corresponds to the 

stabilisation of u ,   and 
ij
x  shown in Figures 9, 11 and 13.  The vanishing of 

u  and   has been used to indicate static equilibrium of the model in the 

numerical modelling.  However, when the applied load is equal to or larger 

than 
r
P , the model is no longer able to re-establish static equilibrium at all.  It 

is seen in Figures 9-15 (g) and (h) that the movement of the model continues 

at a constant rate at 
r

P P  and even diverges at an increasing rate when 

r
P P , which indicates a loss of stability.  Correspondingly, it is seen that the 

total spring force 
sij
F  never reaches the applied force P , whilst 

cv
F  and 

cv
M  

either reach a constant value or increase indefinitely at a growing rate in 

Figures 8(g) and 8(h).  This indicates that the reduced-modulus buckling load 

r
P  is the asymptotic upper limit of the loads under which a perfectly-straight 

simply-supported column is able to achieve a deformed static equilibrium 

state.   

Checking all the applied forces P  which enable re-stabilisation of the model 

(those which are smaller than 
r
P  as mentioned above), with the amount of 

rotation   that they induce at the re-stabilisation, as illustrated for a few 

example cases in Fig. 11, it is found that the amount of rotation induced by 

the forces that are smaller than the tangent-modulus buckling load 
t
P  is very 

small, but it starts to increase significantly as soon as P  increases beyond 
t
P .  
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Considering that a very small initial imperfection has been applied, this 

behaviour is  consistent  with  Shanley’s  statement   that  an initially straight and 

centrally loaded column will remain straight below 
t
P  and bending will begin 

as soon as 
t
P  is exceeded. 

When the applied force and its consequent rotation are sufficiently large, 

differences between the deformations 
ij
x  of the springs, and between their 

velocities 
ij
x ,  are observed, and some of the springs on the left-hand side of 

Fig. 3 start to unload.  For example, considering Figures 13(e) and 14(e), 

initially the compressive deformations of the springs all increase almost 

identically from zero, indicating that very little rotation occurs, and the springs 

are compressed almost uniformly.  At about one second, the deformations 

and velocities of the springs start to vary more markedly.  As the model starts 

to rotate, the deformations of the springs on the right-hand side of Fig. 3 (the 

thin lines) continue to increase rapidly (corresponding to the increase in their 

velocities in Fig. 14(e)).  The deformations of the springs on the left-hand side 

of Fig. 3 (the thick lines) increase at lower rates, some even starting to 

decrease with their velocities becoming negative, as shown in Fig. 14(e)).  In 

addition, due to the linear strain-gradient assumption the differential 

deformation of the pair of springs at the column edges is larger than that of 

the pair nearest to the centre for a certain global angle of rotation  .  Finally, 

the movement of the model gradually stabilizes and the deformation of each 

spring reaches a constant value.  It is seen in Fig. 15(e) that, because almost 

no rotation occurs initially, the forces and deformations of the springs are 

nearly identical, and are shown as the single line from zero to point A.  Soon 
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after the model starts to rotate, some of the springs on the left-hand side of 

Fig. 3 start to unload, while the others continue to load.   

It should be noted especially that when the applied force P  is equal to the 

tangent-modulus buckling load 
t
P , the buckling behaviour of the model is 

distinct from its behaviour when loaded with either larger or smaller loads.  It 

is seen in Figures 11(b) and 12(b) that initially   increases at a constant rate, 

and then   rapidly drops to zero as the model achieves a new static 

equilibrium with a deformed shape.  This re-stabilisation process takes 

significantly longer than when the model is less loaded. It is interesting to note 

that this linear increase of   at constant   occurs in no other loading cases 

except when the applied load is identical to the reduced-modulus buckling 

load. 

4.2 Effects of relative damping and initial imperfection 

A normalised relative damping ratio 
d
R  is introduced to represent the 

relationship between the vertical and rotational damping.  Assuming the 

vertical and rotational dampers are the product of a continuous damping layer 

which is uniformly distributed across the model base and has a damping 

coefficient c , the damping reaction force and moment imposed by the vertical 

and rotational damping are: 

0

    
B

cv v
F u cdx u B c C u         (25) 

 
3

2

2

      
12

B

cr r
B

B
M x u x c dx c C  


          (26) 
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Hence, 
d
R  is defined as 

2

r

v

C

B C

. 

Plotting all the applied loads P  which enable the model to re-stabilise (those 

which are smaller than 
r
P ) against the corresponding rotations  , recorded at 

static equilibrium, gives the buckling load-rotation path of the model.  Fig. 16(a) 

shows the buckling load-rotation paths of models for various values of 
d
R .  Fig. 

16(b) is a magnification of the framed part of Fig. 16(a). These are then 

validated against the theoretical tangent-modulus and reduced-modulus 

buckling loads (the short-dashed and long-dashed lines in Figures 16(a) and 

16(b)).  Irrespective of the variation of the damping, the rotation always starts 

to increase significantly at the tangent-modulus buckling load and then 

continues to increase as the force approaches the reduced-modulus buckling 

load, although the force never exceeds this upper bound (the model is never 

able to achieve a deformed static equilibrium state when the applied force is 

beyond 
r
P ).  The model therefore demonstrates inelastic buckling in the exact 

manner described by Shanley, irrespective of the magnitudes of damping. 

The effects of damping have been investigated by varying 
d
R .  Figures 16(a) 

and 16(b) show that with larger 
d
R , for example at 

d
R  = 20E-2, the relatively 

large rotational damping results in a significant decrease of the amount of 

rotation which is induced by a certain applied load.  It is not difficult to derive 

that as 
d
R  tends to infinity the load-deflection curve will asymptotically 

approach to the reduced-modulus bifurcation line.  However, it will never be 

exactly the same as the reduced-modulus bifurcation line since the model can 
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not remain perfectly vertical after 
t
P  is exceeded.  This is because, in order for 

the column load to go beyond 
t
P , the model must rotate, and so some of the 

springs unload.  Otherwise the value of the tangent modulus 
t
k  should be 

used for the entire cross-section, in which case, the column load cannot 

exceed 
t
P .  On the other hand, as 

d
R  decreases the rotation which is induced 

by a certain applied force increases, and hence the load-deflection curve 

moves towards the tangent-modulus bifurcation line.  It is intuitive that a 

bifurcation failure at the tangent-modulus buckling load should be simulated 

when 
d
R  approaches zero.  However, as 

d
R  decreases further, the approach 

of the load-deflection curve to the tangent-modulus bifurcation line ceases, 

and a convergence to a unique load-deflection curve is observed. This curve 

represents the static buckling load-deflection path at 
d
R  = 0.  The reason that 

the buckling load-deflection path does not asymptotically approach the 

tangent-modulus bifurcation line at 
d
R  = 0 is that the column force P  must 

increase beyond 
t
P  to balance the additional spring forces which are induced 

by the rotation, soon after the model starts to rotate at 
t

P P .  This increase 

of P  will continue as the rotation increases, in order to achieve further force 

equilibrium, until P  approaches 
r
P .  It is also seen in Fig. 16(b) that, for very 

small values of 
d
R , the load-deflection curve just beyond 

t
P  experiences a 

change of curvature, showing an initial bifurcation at 
t
P  which fails to continue 

due to the requirement of force equilibrium.   It should also be noted that 

varying the absolute values of the two damping coefficients may change the 
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time scale of the dynamic process, but it does not affect its eventual static 

equilibrium as long as the ratio 
d
R  remains the same. 

The effect of initial imperfection has also been examined.  Fig. 17 shows the 

buckling load paths of the model with various amount of initial imperfection. It 

can be seen that, as the initial imperfection increases, the load needed to 

induce a certain amount of rotation decreases, but the asymptotic upper limit 

to the loads under which the column is able to gain a deformed static 

equilibrium is still the reduced-modulus load 
r
P .  

5 Conclusions 

A simplified column model similar to Shanley’s has been established, and its 

characteristics have been programmed for dynamic analysis.  The mechanics 

of buckling in the inelastic range has been assessed using this model.  An 

analysis which outputs the dynamic response of the model under static 

loading has been conducted.  When subject to any load smaller than the 

reduced-modulus buckling load, the motion of the model always re-stabilises 

at a static equilibrium position with certain amount of rotation.  Otherwise, 

when the applied force is equal or larger than the reduced-modulus load, 

failure due to instability occurs as the rotation continues to increase infinitely.  

When the applied force and its consequent rotation are sufficiently large, 

differences between the deformations of the springs and between their 

velocities are observed, and some of the springs on the less compressed side 

start to unload.  The two cases in which the applied forces are respectively 

equal to the tangent-modulus and reduced-modulus buckling loads are similar 

in the respect that a linear increase of overall rotation is observed, although 
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the former achieves restabilisation whilst the latter finally loses stability.  The 

static load-rotation path of the model is plotted from all the applied loads P  

which enable re-stabilisation of the model (those which are smaller than 
r
P ) 

against their corresponding rotations  , recorded at static equilibrium.  

Validation of the model against Shanley’s   inelastic  buckling   theory  has  been  

successful.  Setting aside the very small initial imperfections applied, the 

model demonstrates that:   

 An initially straight and centrally loaded column will remain straight 

below 
t
P  

 As soon as 
t
P  is exceeded, the column starts to bend and part of it is 

subject to strain reversal which enables the resultant column force to 

increase towards 
r
P  

 The column resultant force increases simultaneously with rotation due 

to the requirement of force equilibrium 

 The column force can not increase beyond 
r
P   

The variation of damping does not affect the previous statements, but by 

varying the relative damping ratio 
d
R , the amount of rotation induced by a 

certain applied force alters accordingly, which causes the static buckling load-

deflection path to move between the extremes:  

 Very close to the reduced-modulus bifurcation line at 
d
R  =  

 A unique curved path at 
d
R  = 0 

The effect of initial imperfection has also been examined.  Increasing the 

initial imperfection causes the load which is needed to induce a certain 

amount of rotation to decrease, but it does not alter the asymptotic upper limit 
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to the loads under which the column is able to gain a deformed static 

equilibrium from the reduced-modulus buckling load.   
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Figure Captions 

Figure 1. Load-deflection curves given by various column buckling theories. 

Figure 2. Shanley’s  model. 

Figure 3. Multi-spring model. 

Figure 4. Bilinear force-deformation relationship of the springs. 

Figure 5. Calculation procedure within each time step of the numerical 
analysis with the Shanley-like model. 

Figure 6. Sudden bifurcation from the vertical equilibrium position to a 
deflected equilibrium position at the tangent-modulus buckling 
load. 

Figure 7. Sudden bifurcation from the vertical equilibrium position to a 
deflected equilibrium position at the reduced-modulus buckling 
load. 

Figure 8. Development of the total reaction force on all the springs, the 
reaction force on the vertical damper and the reaction moment on 
the rotational damper over time under various applied loads. 

Figure 9. Development of the vertical movement of the model over time 
under various applied loads. 

Figure 10. Velocity of the vertical movement of the model. 

Figure 11. Development of the rotation of the model over time under various 
applied loads. 

Figure 12. Velocity of the rotation of the model. 

Figure 13. Development of the deformation of each spring over time under 
various applied loads. 

Figure 14. Velocity of the deformation of each spring. 

Figure 15. Compressive load-deformation curves of the springs. 

Figure 16. (a) Buckling load-rotation paths of the model with various damping 
ratios. 

(b) Magnification of the framed section of Fig. 16(a). 

Figure 17. Buckling load-rotation paths of the model with various initial 
imperfections. 
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Table Captions 

Table 1.  Formulation of   &   at various loading stages. 

Table 2. Specification of the model analysed in Section 4. 
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     

Linear-elastic (L-E) 0 k  

Plastic (P) p t p
F k x  

t
k  

Unloading (UL) UL UL
F kx  k  
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