183 research outputs found

    Muscle Strength and Qualitative Jump-Landing Differences in Male and Female Military Cadets: The Jump-ACL Study

    Get PDF
    Recent studies have focused on gender differences in movement patterns as risk factors for ACL injury. Understanding intrinsic and extrinsic factors which contribute to movement patterns is critical to ACL injury prevention efforts. Isometric lower- extremity muscular strength, anthropometrics, and jump-landing technique were analyzed for 2,753 cadets (1,046 female, 1,707 male) from the U.S. Air Force, Military and Naval Academies. Jump- landings were evaluated using the Landing Error Scoring System (LESS), a valid qualitative movement screening tool. We hypothesized that distinct anthropometric factors (Q-angle, navicular drop, bodyweight) and muscle strength would predict poor jump-landing technique in males versus females, and that female cadets would have higher scores (more errors) on a qualitative movement screen (LESS) than males. Mean LESS scores were significantly higher in female (5.34 ± 1.51) versus male (4.65 ± 1.69) cadets (p < 0.001). Qualitative movement scores were analyzed using factor analyses, yielding five factors, or “patterns”, contributing to poor landing technique. Females were significantly more likely to have poor technique due to landing with less hip and knee flexion at initial contact (p < 0.001), more knee valgus with wider landing stance (p < 0. 001), and less flexion displacement over the entire landing (p < 0.001). Males were more likely to have poor technique due to landing toe-out (p < 0.001), with heels first, and with an asymmetric foot landing (p < 0.001). Many of the identified factor patterns have been previously proposed to contribute to ACL injury risk. However, univariate and multivariate analyses of muscular strength and anthropometric factors did not strongly predict LESS scores for either gender, suggesting that changing an athlete’s alignment, BMI, or muscle strength may not directly improve his or her movement patterns

    Risk of Lower Extremity Injury in a Military Cadet Population After a Supervised Injury-Prevention Program

    Get PDF
    Specific movement patterns have been identified as possible risk factors for noncontact lower extremity injuries. The Dynamic Integrated Movement Enhancement (DIME) was developed to modify these movement patterns to decrease injury risk

    The Landing Error Scoring System as a Screening Tool for an Anterior Cruciate Ligament Injury–Prevention Program in Elite-Youth Soccer Athletes

    Get PDF
    Identifying neuromuscular screening factors for anterior cruciate ligament (ACL) injury is a critical step toward large-scale deployment of effective ACL injury-prevention programs. The Landing Error Scoring System (LESS) is a valid and reliable clinical assessment of jump-landing biomechanics

    Seven Steps for Developing and Implementing a Preventive Training Program: Lessons Learned from JUMP-ACL and Beyond

    Get PDF
    Musculoskeletal injuries during military and sport-related training are common, costly and potentially debilitating. Thus, there is a great need to develop and implement evidence-based injury prevention strategies to reduce the burden of musculoskeletal injury. The lack of attention to implementation issues is a major factor limiting the ability to successfully reduce musculoskeletal injury rates using evidence-based injury prevention programs. We propose 7 steps that can be used to facilitate successful design and implementation of evidence-based injury prevention programs within the logical constraints of a real-world setting by identifying implementation barriers and associated solutions. Incorporating these 7 steps along with other models for behavioral health interventions may improve the overall efficacy of military and sport-related injury prevention programs

    A code to Make Your Own Synthetic ObservaTIonS (MYOSOTIS)

    Get PDF
    We introduce our new code MYOSOTIS (Make Your Own Synthetic ObservaTIonS) which is designed to produce synthetic observations from simulated clusters. The code can synthesize observations from both ground-and spaced-based observatories, for a range of different filters, observational conditions and angular/spectral resolution. In this paper, we highlight some of the features of MYOSOTIS, creating synthetic observations from young massive star clusters. Our model clusters are simulated using NBODY6 code and have different total masses, halfmass radii, and binary fractions. The synthetic observations are made at the age of 2 Myr with Solar metallicity and under different extinction conditions. For each cluster, we create synthetic images of the Hubble Space Telescope (HST) in the visible (WFPC2/F555W) as well as Very Large Telescopes in the nearIR (SPHERE/IRDIS/Ks). We show how MYOSOTIS can be used to look at mass function (MF) determinations. For this aim we re-estimate stellar masses using a photometric analysis on the synthetic images. The synthetic MF slopes are compared to their actual values. Our photometric analysis demonstrate that depending on the adopted filter, extinction, angular resolution, and pixel sampling of the instruments, the power-law index of the underlying MFs can be shallower than the observed ones by at least ±0.25 dex which is in agreement with the observed discrepancies reported in the literature, specially for young star clusters

    Notch signaling during human T cell development

    Get PDF
    Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse

    The spatial evolution of young massive clusters - I. A new tool to quantitatively trace stellar clustering

    Get PDF
    Context. There are a number of methods that identify stellar sub-structure in star forming regions, but these do not quantify the degree of association of individual stars – something which is required if we are to better understand the mechanisms and physical processes that dictate structure. Aims. We present the new novel statistical clustering tool “INDICATE” which assesses and quantifies the degree of spatial clustering of each object in a dataset, discuss its applications as a tracer of morphological stellar features in star forming regions, and to look for these features in the Carina Nebula (NGC 3372). Methods. We employ a nearest neighbour approach to quantitatively compare the spatial distribution in the local neighbourhood of an object with that expected in an evenly spaced uniform (i.e. definitively non-clustered) field. Each object is assigned a clustering index (“I”) value, which is a quantitative measure of its clustering tendency. We have calibrated our tool against random distributions to aid interpretation and identification of significant I values. Results. Using INDICATE we successfully recover known stellar structure of the Carina Nebula, including the young Trumpler 14-16, Treasure Chest and Bochum 11 clusters. Four sub-clusters contain no, or very few, stars with a degree of association above random which suggests these sub-clusters may be fluctuations in the field rather than real clusters. In addition we find: (1) Stars in the NW and SE regions have significantly different clustering tendencies, which is reflective of differences in the apparent star formation activity in these regions. Further study is required to ascertain the physical origin of the difference; (2) The different clustering properties between the NW and SE regions are also seen for OB stars and are even more pronounced; (3) There are no signatures of classical mass segregation present in the SE region – massive stars here are not spatially concentrated together above random; (4) Stellar concentrations are more frequent around massive stars than typical for the general population, particularly in the Tr14 cluster; (5) There is a relation between the concentration of OB stars and the concentration of (lower mass) stars around OB stars in the centrally concentrated Tr14 and Tr15, but no such relation exists in Tr16. We conclude this is due to the highly sub-structured nature of Tr16. Conclusions. INDICATE is a powerful new tool employing a novel approach to quantify the clustering tendencies of individual objects in a dataset within a user-defined parameter space. As such it can be used in a wide array of data analysis applications. In this paper we have discussed and demonstrated its application to trace morphological features of young massive clusters

    Lung diffusing capacity for nitric oxide and carbon monoxide in relation to morphological changes as assessed by computed tomography in patients with cystic fibrosis

    Get PDF
    Background Due to large-scale destruction, changes in membrane diffusion (Dm) may occur in cystic fibrosis (CF), in correspondence to alterations observed by computed tomography (CT). Dm can be easily quantified via the diffusing capacity for nitric oxide (DLNO), as opposed to the conventional diffusing capacity for carbon monoxide (DLCO). We thus studied the relationship between DLNO as well as DLCO and a CF-specific CT score in patients with stable CF. Methods Simultaneous single-breath determinations of DLNO and DLCO were performed in 21 CF patients (mean ± SD age 35 ± 9 y, FEV1 66 ± 28%pred). Patients also underwent spirometry and bodyplethysmography. CT scans were evaluated via the Brody score and rank correlations (rS) with z-scores of functional measures were computed. Results CT scores correlated best with DLNO (rS = -0.83; p < 0.001). Scores were also related to the volume-specific NO transfer coefficient (KNO; rS = -0.63; p < 0.01) and to DLCO (rS = -0.79; p < 0.001) but not KCO. Z-scores for DLNO were significantly lower than for DLCO (p < 0.001). Correlations with spirometric (e.g., FEV1, IVC) or bodyplethysmographic (e.g., SRaw, RV/TLC) indices were weaker than for DLNO or DLCO but most of them were also significant (p < 0.05 each). Conclusion In this cross sectional study in patients with CF, DLNO and DLCO reflected CT-morphological alterations of the lung better than other measures. Thus the combined diffusing capacity for NO and CO may play a future role for the non-invasive, functional assessment of structural alterations of the lung in CF

    A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days

    Get PDF
    Seliciclib (CYC202; R-roscovitine) is the first selective, orally bioavailable inhibitor of cyclin-dependent kinases 1, 2, 7 and 9 to enter clinical trial. Preclinical studies showed antitumour activity in a broad range of human tumour xenografts. A phase I trial was performed with a 7-day b.i.d. p.o. schedule. Twenty-one patients (median age 62 years, range: 39–73 years) were treated with doses of 100, 200 and 800 b.i.d. Dose-limiting toxicities were seen at 800 mg b.i.d.; grade 3 fatigue, grade 3 skin rash, grade 3 hyponatraemia and grade 4 hypokalaemia. Other toxicities included reversible raised creatinine (grade 2), reversible grade 3 abnormal liver function and grade 2 emesis. An 800 mg portion was investigated further in 12 patients, three of whom had MAG3 renograms. One patient with a rapid increase in creatinine on day 3 had a reversible fall in renal perfusion, with full recovery by day 14, and no changes suggestive of renal tubular damage. Further dose escalation was precluded by hypokalaemia. Seliciclib reached peak plasma concentrations between 1 and 4 h and elimination half-life was 2–5 h. Inhibition of retinoblastoma protein phosphorylation was not demonstrated in peripheral blood mononuclear cells. No objective tumour responses were noted, but disease stabilisation was recorded in eight patients; this lasted for a total of six courses (18 weeks) in a patient with ovarian cancer

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
    • …
    corecore