15 research outputs found

    Impact of Different Milk Yields on Milk Quality in Bohemian Spotted Cattle

    Full text link

    Influences of Different Milk Yields of Holstein Cows on Milk Quality Indicators in the Czech Republic

    Full text link
    The milk yield (MY) is an important economic and health factor closely connected with the health status of dairy cows, their reproduction performance, longevity and milk composition and properties (MIs). The differences within MIs between high yielding herd (Group 1; 10 282 kg per lactation) and three herds with average MY (Group 2; 7 926 kg) were tested. The files with 96 and 290 milk samples were collected in summer and winter feeding seasons and well balanced in lactation factors. Group 1 had higher genetical value, better nutrition and was milked three times per day and its MY was higher by 30% (P P P > 0.05). The U was probably higher due to higher loading of the nitrogen nutrition (4.27 > 3.57 mmol l-1) in MY 1. Surprisingly, SCC was higher (112 > 81 103 ml-1) and AC lower ((0.0374) 0.0250 -1) in Group 1. Both the MIs did not indicate problems of the health status. An indicator of energy nutrition balance as fat/protein ratio was not influenced (1.15 ± 0.24 versus 1.16 ± 0.23; P > 0.05), despite the large difference between MY 1 and 2. URN was higher in MY 1 (46.5 > 39.1%) due to more efficient nutrition, like in U. The high MY had no negative impacts on MIs with well balanced nutrition of Holstein cattle

    Organotin(IV)-Decorated Graphene Quantum Dots as Dual Platform for Molecular Imaging and Treatment of Triple Negative Breast Cancer.

    Get PDF
    The pharmacological activity of organotin(IV) complexes in cancer therapy is well recognized but their large applicability is hampered by their poor water solubility. Hence, carbon dots, in particular nitrogen-doped graphene quantum dots (NGQDs), may be a promising alternative for the efficient delivery of organotin(IV) compounds as they have a substantial aqueous solubility, a good chemical stability, and non-toxicity as well as a bright photoluminescence that make them ideal for theranostic applications against cancer. Two different multifunctional nanosystems have been synthesized and fully characterized based on two fragments of organotin-based cytotoxic compounds and 4-formylbenzoic acid (FBA), covalently grafted onto the NGQDs surface. Subsequently, an in vitro determination of the therapeutic and theranostic potential of the achieved multifunctional systems was carried out. The results showed a high cytotoxic potential of the NGQDs-FBA-Sn materials against breast cancer cell line (MDA-MB-231) and a lower effect on a non-cancer cell line (kidney cells, HEK293T). Besides, thanks to their optical properties, the dots enabled their fluorescence molecular imaging in the cytoplasmatic region of the cells pointing towards a successful cellular uptake and a release of the metallodrug inside cancer cells (NGQDs-FBA-Sn).This work was supported by Operational Program Research, Development, and Education-Project ‘MSCAfellow4@MUNI’ (No. CZ.02.2.69/0.0/0.0/20_079/0017045) and the Spanish Ministry of Universities for a Maria Zambrano funding (RSU.UDC.MZ09) transferred by the European Union-Next Generation EU. We acknowledge CzechNanoLab Research Infrastructure (LM2018110), supported by the Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR). We are grateful to Prof. Vladimír Šindelář and Prof. Petr Klan for allowing us to use the MW reactor, UV-vis and fluorescence spectrometer, supported by RECETOX research infrastructure (via MEYS CR under LM2018121). M.F. is grateful to Instituto de Salud Carlos III (ISCIII) for project No DTS20/00109 (AES20-ISCIII) and PI22/ 00789 (AES22-ISCIII). M.F. and K.O.P. acknowledge the support of Microscopy & Dynamic Imaging Unit of CNIC, Madrid, Spain. The Unit is part of the ReDiB-ICTS and has the support of FEDER, “Una manera de hacer Europa.” The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MICIN/AEI/10.13039/501100011033). We would also like to thank funding from the research project PID2022- 136417NB-I00 financed by MCIN/AEI/10.13039/501100011033/ and “ERDF A way of making Europe”, and from the Research Thematic Network RED2022-134091-T financed by MCIN/AEI/ 10.13039/501100011033.S

    Synthetic nanoarchitectonics of functional organic-inorganic 2D germanane heterostructures via click chemistry

    No full text
    Succeeding graphene, 2D inorganic materials made of reactive van der Waals layers, like 2D germanane (2D-Ge) derivatives, have attracted great attention because their physicochemical characteristics can be entirely tuned by modulating the nature of the surface substituent. Although very interesting from a scientific point of view, almost all the reported works involving 2D-Ge derivatives are focused on computational studies. Herein, a first prototype of organic-inorganic 2D-Ge heterostructure has been synthesized by covalently anchoring thiol-rich carbon dots (CD-SH) onto 2D allyl germanane (2D-aGe) via a simple and green "one-pot" click chemistry approach. Remarkably, the implanted characteristics of the carbon nanomaterial provide new physicochemical features to the resulting 0D/2D heterostructure, making possible its implementation in yet unexplored optoelectronic tasks-e.g., as a fluorescence resonance energy transfer (FRET) sensing system triggered by supramolecular pi-pi interactions-that are inaccessible for the pristine 2D-aGe counterpart. Consequently, this work builds a foundation toward the robust achievement of functional organic-inorganic 2D-Ge nanoarchitectonics through covalently assembling thiol-rich carbon nanoallotropes on commercially available 2D-aGe.Web of Science344

    Analysis of epoxy functionalized layers synthesized by plasma polymerization of allyl glycidyl ether

    No full text
    Текст статьи не публикуется в открытом доступе в соответствии с политикой журнала

    Possible charge ordering and anomalous transport in graphene/graphene quantum dot heterostructure

    No full text
    Observations of superconductivity and charge density waves (CDW) in graphene have been elusive thus far due to weak electron-phonon coupling (EPC) interactions. Here, we report a unique observation of anomalous transport and multiple charge ordering phases at high temperatures ( T1 ∼ 213K , T2 ∼ 325K ) in a 0D−2D van der Waals (vdW) heterostructure comprising of single layer graphene (SLG) and functionalized (amine) graphene quantum dots (GQD). The presence of functionalized GQD contributed to charge transfer with shifting of the Dirac point ∼ 0.05 eV above the Fermi level (ab initio simulations) and carrier density n ∼ − 0.3 × 1012 cm−2 confirming p-doping in SLG and two-fold increase in EPC interaction was achieved. Moreover, we elucidate the interplay between electron-electron and electron-phonon interactions to substantiate high temperature EPC driven charge ordering in the heterostructure through analyses of magnetotransport and weak anti-localization (WAL) framework. Our results provide impetus to investigate strongly correlated phenomena such as CDW and superconducting phase transitions in novel graphene based heterostructures.</p

    Biodegradable Nanohybrid Materials as Candidates for Self-Sanitizing Filters Aimed at Protection from SARS-CoV-2 in Public Areas

    Get PDF
    The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 &mu;g/L/day for Cu2+ versus 15 &micro;g/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%
    corecore