9,524 research outputs found

    Linking of the BENSON graph-plotter with the Elektronika-1001 computer

    Get PDF
    A device, developed by the Institute of Space Research of the Academy of Sciences of the USSR, for linking the Elektronika-100I computer with the BENSON graph-plotter is described. Programs are compiled which provide display of graphic and alphanumeric information. Instructions for their utilization are given

    Giant Pulses with Nanosecond Time Resolution detected from the Crab Pulsar at 8.5 and 15.1 GHz

    Get PDF
    We present a study of shape, spectra and polarization properties of giant pulses (GPs) from the Crab pulsar at the very high frequencies of 8.5 and 15.1 GHz. Studies at 15.1 GHz were performed for the first time. Observations were conducted with the 100-m radio telescope in Effelsberg in Oct-Nov 2007 at the frequencies of 8.5 and 15.1 GHz as part of an extensive campaign of multi-station multi-frequency observations of the Crab pulsar. A selection of the strongest pulses was recorded with a new data acquisition system, based on a fast digital oscilloscope, providing nanosecond time resolution in two polarizations in a bandwidth of about 500 MHz. We analyzed the pulse shapes, polarisation and dynamic spectra of GPs as well as the cross-correlations between their LHC and RHC signals. No events were detected outside main pulse and interpulse windows. GP properties were found to be very different for GPs emitted at longitudes of the main pulse and the interpulse. Cross-correlations of the LHC and RHC signals show regular patterns in the frequency domain for the main pulse, but these are missing for the interpulse GPs. We consider consequences of application of the rotating vector model to explain the apparent smooth variation in the position angle of linear polarization for main pulse GPs. We also introduce a new scenario of GP generation as a direct consequence of the polar cap discharge. We find further evidence for strong nano-shot discharges in the magnetosphere of the Crab pulsar. The repetitive frequency spectrum seen in GPs at the main pulse phase is interpreted as a diffraction pattern of regular structures in the emission region. The interpulse GPs however have a spectrum that resembles that of amplitude modulated noise. Propagation effects may be the cause of the differences.Comment: Astronomy & Astrophysics (accepted

    Pair creation in transport equations using the equal-time Wigner function

    Full text link
    Based on the equal-time Wigner function for the Klein-Gordon field, we discuss analytically the mechanism of pair creation in a classical electromagnetic field including back-reaction. It is shown that the equations of motion for the Wigner function can be reduced to a variable-frequency oscillator. The pair-creation rate results then from a calculation analogous to barrier penetration in nonrelativistic quantum mechanics. The Wigner function allows one to utilize this treatment for the formulation of an effective transport theory for the back-reaction problem with a pair-creation source term including Bose enhancement.Comment: 19 pages, LaTeX, UFTP 316/199

    Effect of transient pinning on stability of drops sitting on an inclined plane

    Get PDF
    We report on new instabilities of the quasi-static equilibrium of water drops pinned by a hydrophobic inclined substrate. The contact line of a statically pinned drop exhibits three transitions of partial depinning: depinning of the advancing and receding parts of the contact line and depinning of the entire contact line leading to the drop's translational motion. We find a region of parameters where the classical Macdougall-Ockrent-Frenkel approach fails to estimate the critical volume of the statically pinned inclined drop

    Schwinger Pair Production in dS_2 and AdS_2

    Full text link
    We study Schwinger pair production in scalar QED from a uniform electric field in dS_2 with scalar curvature R_{dS} = 2 H^2 and in AdS_2 with R_{AdS} = - 2 K^2. With suitable boundary conditions, we find that the pair-production rate is the same analytic function of the scalar curvature in both cases.Comment: RevTex 6 pages, no figure; replaced by the version published in PR
    • …
    corecore