5,225 research outputs found

    Spin interference in silicon three-terminal one-dimensional rings

    Full text link
    We present the first findings of the spin transistor effect in the Rashba gate-controlled ring embedded in the p-type self-assembled silicon quantum well that is prepared on the n-type Si (100) surface. The coherence and phase sensitivity of the spin-dependent transport of holes are studied by varying the value of the external magnetic field and the bias voltage that are applied perpendicularly to the plane of the double-slit ring. Firstly, the amplitude and phase sensitivity of the 0.7(2e^2/h) feature of the hole quantum conductance staircase revealed by the quantum point contact inserted in the one of the arms of the double-slit ring are found to result from the interplay of the spontaneous spin polarization and the Rashba spin-orbit interaction. Secondly, the quantum scatterers connected to two one-dimensional leads and the quantum point contact inserted are shown to define the amplitude and the phase of the Aharonov-Bohm and the Aharonov-Casher conductance oscillations.Comment: 8 pages, 5 figure

    Anomalous spin-resolved point-contact transmission of holes due to cubic Rashba spin-orbit coupling

    Full text link
    Evidence is presented for the finite wave vector crossing of the two lowest one-dimensional spin-split subbands in quantum point contacts fabricated from two-dimensional hole gases with strong spin-orbit interaction. This phenomenon offers an elegant explanation for the anomalous sign of the spin polarization filtered by a point contact, as observed in magnetic focusing experiments. Anticrossing is introduced by a magnetic field parallel to the channel or an asymmetric potential transverse to it. Controlling the magnitude of the spin-splitting affords a novel mechanism for inverting the sign of the spin polarization.Comment: 4 pages, 3 figure

    Absence of the Rashba effect in undoped asymmetric quantum wells

    Full text link
    To an electron moving in free space an electric field appears as a magnetic field which interacts with and can reorient the electron spin. In semiconductor quantum wells this spin-orbit interaction seems to offer the possibility of gate-voltage control in spintronic devices but, as the electrons are subject to both ion-core and macroscopic structural potentials, this over-simple picture has lead to intense debate. For example, an externally applied field acting on the envelope of the electron wavefunction determined by the macroscopic potential, underestimates the experimentally observed spin-orbit field by many orders of magnitude while the Ehrenfest theorem suggests that it should actually be zero. Here we challenge, both experimentally and theoretically, the widely held belief that any inversion asymmetry of the macroscopic potential, not only electric field, will produce a significant spin-orbit field for electrons. This conclusion has far-reaching consequences for the design of spintronic devices while illuminating important fundamental physics.Comment: 7 pages, 5 fig

    Skew scattering due to intrinsic spin-orbit coupling in a two-dimensional electron gas

    Get PDF
    We present the generalization of the two-dimensional quantum scattering formalism to systems with Rashba spin-orbit coupling. Using symmetry considerations, we show that the differential scattering cross section depends on the spin state of the incident electron, and skew scattering may arise even for central spin-independent scattering potentials. The skew scattering effect is demonstrated by exact results of a simple hard wall impurity model. The magnitude of the effect for short-range impurities is estimated using the first Born approximation. The exact formalism we present can serve as a foundation for further theoretical investigations.Comment: 4 pages, 3 figur

    Microscopic Theory of Rashba Interaction in Magnetic Metal

    Full text link
    Theory of Rashba spin-orbit coupling in magnetic metals is worked out from microscopic Hamiltonian describing d-orbitals. When structural inversion symmetry is broken, electron hopping between dd-orbitals generates chiral ordering of orbital angular momentum, which combines with atomic spin-orbit coupling to result in the Rashba interaction. Rashba parameter characterizing the interaction is band-specific, even reversing its sign from band to band. Large enhancement of the Rashba parameter found in recent experiments is attributed to the orbital mixing of 3d magnetic atoms with non-magnetic heavy elements as we demonstrate by first-principles and tight-binding calculations.Comment: 5 pages, 2 figure

    Elementary electronic excitation from a two-dimensional hole gas in the presence of spin-orbit interaction

    Full text link
    We present a theoretical study of the elementary electronic excitation associated with plasmon modes in a two-dimensional hole gas (2DHG) in the presence of spin-orbit (SO) interaction induced by the Rashba effect. The calculation is carried out using a standard random-phase-approximation approach. It is found that in such a spintronic system, plasmon excitation can be achieved via intra- and inter-SO electronic transitions around the Fermi level. As a result, the intra- and inter-SO plasmon modes can be observed. More importantly, the plasmon modes induced by inter-SO transition are optic-like and these modes can be directly applied to identify the Rashba spin splitting in 2DHG systems through optical measurements. The interesting features of the plasmon excitation in a spin split 2DHG are analyzed and discussed in details. Moreover, the results obtained for a 2DHG are compared with those obtained for a spin-splitting 2DEG reported very recently.Comment: 17 pages and 6 figure

    Hole spin relaxation in intrinsic and pp-type bulk GaAs

    Full text link
    We investigate hole spin relaxation in intrinsic and pp-type bulk GaAs from a fully microscopic kinetic spin Bloch equation approach. In contrast to the previous study on hole spin dynamics, we explicitly include the intraband coherence and the nonpolar hole-optical-phonon interaction, both of which are demonstrated to be of great importance to the hole spin relaxation. The relative contributions of the D'yakonov-Perel' and Elliott-Yafet mechanisms on hole spin relaxation are also analyzed. In our calculation, the screening constant, playing an important role in the hole spin relaxation, is treated with the random phase approximation. In intrinsic GaAs, our result shows good agreement with the experiment data at room temperature, where the hole spin relaxation is demonstrated to be dominated by the Elliott-Yafet mechanism. We also find that the hole spin relaxation strongly depends on the temperature and predict a valley in the density dependence of the hole spin relaxation time at low temperature due to the hole-electron scattering. In pp-type GaAs, we predict a peak in the spin relaxation time against the hole density at low temperature, which originates from the distinct behaviors of the screening in the degenerate and nondegenerate regimes. The competition between the screening and the momentum exchange during scattering events can also lead to a valley in the density dependence of the hole spin relaxation time in the low density regime. At high temperature, the effect of the screening is suppressed due to the small screening constant. Moreover, we predict a nonmonotonic dependence of the hole spin relaxation time on temperature associated with the screening together with the hole-phonon scattering. Finally, we find that the D'yakonov-Perel' mechanism can markedly contribute to the .... (omitted due to the limit of space)Comment: 11 pages, 7 figures, Phys. Rev. B, in pres

    Hole spin relaxation in pp-type (111) GaAs quantum wells

    Full text link
    Hole spin relaxation in pp-type (111) GaAs quantum wells is investigated in the case with only the lowest hole subband, which is heavy-hole like in (111) GaAs/AlAs and light-hole like in (111) GaAs/InP quantum wells, being relevant. The subband L\"{o}wdin perturbation method is applied to obtain the effective Hamiltonian including the Dresselhaus and Rashba spin-orbit couplings. Under a proper gate voltage, the total in-plane effective magnetic field in (111) GaAs/AlAs quantum wells can be strongly suppressed in the whole momentum space, while the one in (111) GaAs/InP quantum wells can be suppressed only on a special momentum circle. The hole spin relaxation due to the D'yakonov-Perel' and Elliott-Yafet mechanisms is calculated by means of the fully microscopic kinetic spin Bloch equation approach with all the relevant scatterings explicitly included. For (111) GaAs/AlAs quantum wells, extremely long heavy-hole spin relaxation time (upto hundreds of nanoseconds) is predicted. In addition, we predict a pronounced peak in the gate-voltage dependence of the heavy-hole spin relaxation time due to the D'yakonov-Perel' mechanism. This peak origins from the suppression of the unique inhomogeneous broadening in (111) GaAs/AlAs quantum wells. Moreover, the Elliott-Yafet mechanism influences the spin relaxation only around the peak area due to the small spin mixing between the heavy and light holes in quantum wells with small well width. We also show the anisotropy of the spin relaxation. In (111) GaAs/InP quantum wells, a mild peak, similar to the case for electrons in (111) GaAs quantum wells, is also predicted in the gate-voltage dependence of the light-hole spin relaxation time. The contribution of the Elliott-Yafet mechanism is always negligible in this case.Comment: 9 pages, 4 figure

    Rashba spin orbit interaction in a quantum wire superlattice

    Get PDF
    In this work we study the effects of a longitudinal periodic potential on a parabolic quantum wire defined in a two-dimensional electron gas with Rashba spin-orbit interaction. For an infinite wire superlattice we find, by direct diagonalization, that the energy gaps are shifted away from the usual Bragg planes due to the Rashba spin-orbit interaction. Interestingly, our results show that the location of the band gaps in energy can be controlled via the strength of the Rashba spin-orbit interaction. We have also calculated the charge conductance through a periodic potential of a finite length via the non-equilibrium Green's function method combined with the Landauer formalism. We find dips in the conductance that correspond well to the energy gaps of the infinite wire superlattice. From the infinite wire energy dispersion, we derive an equation relating the location of the conductance dips as a function of the (gate controllable) Fermi energy to the Rashba spin-orbit coupling strength. We propose that the strength of the Rashba spin-orbit interaction can be extracted via a charge conductance measurement.Comment: 9 pages, 9 figure
    corecore