11,279 research outputs found

    The Gravitational Hamiltonian in the Presence of Non-Orthogonal Boundaries

    Get PDF
    This paper generalizes earlier work on Hamiltonian boundary terms by omitting the requirement that the spacelike hypersurfaces Σt\Sigma_t intersect the timelike boundary B\cal B orthogonally. The expressions for the action and Hamiltonian are calculated and the required subtraction of a background contribution is discussed. The new features of a Hamiltonian formulation with non-orthogonal boundaries are then illustrated in two examples.Comment: 23 pages, 1 figure, LaTeX. The action is altered to include a corner term which results in a different value for the non-orthogonal term. An additional appendix with Euclidean results is included. To appear in Class. Quant. Gra

    Blind Inversion of Wiener Systems

    Get PDF
    A system in which a linear dynamic part is followed by a non linear memoryless distortion a Wiener system is blindly inverted This kind of systems can be modelised as a postnonlinear mixture and using some results about these mixtures an e cient algorithm is proposed Results in a hard situation are presented and illustrate the e ciency of this algorith

    Ferromagnetism in the Mott insulator Ba2NaOsO6

    Get PDF
    Results are presented of single crystal structural, thermodynamic, and reflectivity measurements of the double-perovskite Ba2NaOsO6. These characterize the material as a 5d^1 ferromagnetic Mott insulator with an ordered moment of ~0.2 Bohr magnetons per formula unit and TC = 6.8(3) K. The magnetic entropy associated with this phase transition is close to Rln2, indicating that the quartet groundstate anticipated from consideration of the crystal structure is split, consistent with a scenario in which the ferromagnetism is associated with orbital ordering.Comment: 5 pages, 5 figures, added reference

    Predictors and Consequences of Anaemia Among Antiretroviral-Naïve HIV-Infected and HIV-Uninfected Children in Tanzania.

    Get PDF
    Predictors and consequences of childhood anaemia in settings with high HIV prevalence are not well known. The aims of the present study were to identify maternal and child predictors of anaemia among children born to HIV-infected women and to study the association between childhood anaemia and mortality. Prospective cohort study. Maternal characteristics during pregnancy and Hb measurements at 3-month intervals from birth were available for children. Information was also collected on malaria and HIV infection in the children, who were followed up for survival status until 24 months after birth. Dar es Salaam, Tanzania. The study sample consisted of 829 children born to HIV-positive women. Advanced maternal clinical HIV disease (relative risk (RR) for stage > or =2 v. stage 1: 1.31, 95 % CI 1.14, 1.51) and low CD4 cell counts during pregnancy (RR for <350 cells/mm3 v. > or =350 cells/mm3: 1.58, 95 % CI 1.05, 2.37) were associated with increased risk of anaemia among children. Birth weight <2500 g, preterm birth (<34 weeks), malaria parasitaemia and HIV infection in the children also increased the risk of anaemia. Fe-deficiency anaemia in children was an independent predictor of mortality in the first two years of life (hazard ratio 1.99, 95 % CI 1.06, 3.72). Comprehensive care including highly active antiretroviral therapy to eligible HIV-infected women during pregnancy could reduce the burden of anaemia in children. Programmes for the prevention of mother-to-child transmission of HIV and antimalarial treatment to children could improve child survival in settings with high HIV prevalence

    Kelvin-Helmholtz Instability of the Magnetopause of Disc-Accreting Stars

    Full text link
    This work investigates the short wavelength stability of the magnetopause between a rapidly-rotating, supersonic, dense accretion disc and a slowly-rotating low-density magnetosphere of a magnetized star. The magnetopause is a strong shear layer with rapid changes in the azimuthal velocity, the density, and the magnetic field over a short radial distance and thus the Kelvin-Helmholtz (KH) instability may be important. The plasma dynamics is treated using non-relativistic, compressible (isentropic) magnetohydrodynamics. It is necessary to include the displacement current in order that plasma wave velocities remain less than the speed of light. We focus mainly on the case of a star with an aligned dipole magnetic field so that the magnetic field is axial in the disc midplane and perpendicular to the disc flow velocity. However, we also give results for cases where the magnetic field is at an arbitrary angle to the flow velocity. For the aligned dipole case the magnetopause is most unstable for KH waves propagating in the azimuthal direction perpendicular to the magnetic field which tends to stabilize waves propagating parallel to it. The wave phase velocity is that of the disc matter. A quasi-linear theory of the saturation of the instability leads to a wavenumber (kk) power spectrum k1\propto k^{-1} of the density and temperature fluctuations of the magnetopause, and it gives the mass accretion and angular momentum inflow rates across the magnetopause. For self-consistent conditions this mass accretion rate will be equal to the disc accretion rate at large distances from the magnetopause.Comment: 8 pages, 7 figure

    Nonlinear Screening and Effective Electrostatic Interactions in Charge-Stabilized Colloidal Suspensions

    Full text link
    A nonlinear response theory is developed and applied to electrostatic interactions between spherical macroions, screened by surrounding microions, in charge-stabilized colloidal suspensions. The theory describes leading-order nonlinear response of the microions (counterions, salt ions) to the electrostatic potential of the macroions and predicts microion-induced effective many-body interactions between macroions. A linear response approximation [Phys. Rev. E 62, 3855 (2000)] yields an effective pair potential of screened-Coulomb (Yukawa) form, as well as a one-body volume energy, which contributes to the free energy. Nonlinear response generates effective many-body interactions and essential corrections to both the effective pair potential and the volume energy. By adopting a random-phase approximation (RPA) for the response functions, and thus neglecting microion correlations, practical expressions are derived for the effective pair and triplet potentials and for the volume energy. Nonlinear screening is found to weaken repulsive pair interactions, induce attractive triplet interactions, and modify the volume energy. Numerical results for monovalent microions are in good agreement with available ab initio simulation data and demonstrate that nonlinear effects grow with increasing macroion charge and concentration and with decreasing salt concentration. In the dilute limit of zero macroion concentration, leading-order nonlinear corrections vanish. Finally, it is shown that nonlinear response theory, when combined with the RPA, is formally equivalent to the mean-field Poisson-Boltzmann theory and that the linear response approximation corresponds, within integral-equation theory, to a linearized hypernetted-chain closure.Comment: 30 pages, 8 figures, Phys. Rev. E (in press

    OH (1720 MHz) Masers: A Multiwavelength Study of the Interaction between the W51C Supernova Remnant and the W51B Star Forming Region

    Full text link
    We present a comprehensive view of the W51B HII region complex and the W51C supernova remnant (SNR) using new radio observations from the VLA, VLBA, MERLIN, JCMT, and CSO along with archival data from Spitzer, ROSAT, ASCA, and Chandra. Our VLA data include the first 400 cm (74 MHz) continuum image of W51 at high resolution (88 arcsec). The 400 cm image shows non-thermal emission surrounding the G49.2-0.3 HII region, and a compact source of non-thermal emission (W51B_NT) coincident with the previously-identified OH (1720 MHz) maser spots, non-thermal 21 and 90 cm emission, and a hard X-ray source. W51B_NT falls within the region of high likelihood for the position of TeV gamma-ray emission. Using the VLBA three OH (1720 MHz) maser spots are detected in the vicinity of W51B_NT with sizes of 60 to 300 AU and Zeeman effect magnetic field strengths of 1.5 to 2.2 mG. The multiwavelength data demonstrate that the northern end of the W51B HII region complex has been partly enveloped by the advancing W51C SNR and this interaction explains the presence of W51B_NT and the OH masers. This interaction also appears in the thermal molecular gas which partially encircles W51B_NT and exhibits narrow pre-shock (DeltaV 5 km/s) and broad post-shock (DeltaV 20 km/s) velocity components. RADEX radiative transfer modeling of these two components yield physical conditions consistent with the passage of a non-dissociative C-type shock. Confirmation of the W51B/W51C interaction provides additional evidence in favor of this region being one of the best candidates for hadronic particle acceleration known thus far.Comment: Accepted to Ap

    The brightest OH maser in the sky: a flare of emission in W75 N

    Full text link
    A flare of maser radio emission in the OH-line 1665 MHz has been discovered in the star forming region W75 N in 2003, with the flux density of about 1000 Jy. At the time it was the strongest OH maser detected during the whole history of observations since the discovery of cosmic masers in 1965. The flare emission is linearly polarized with a degree of polarization near 100%. A weaker flare with a flux of 145 Jy was observed in this source in 2000 - 2001, which was probably a precursor of the powerful flare. Intensity of two other spectral features has decreased after beginning of the flare. Such variation of the intensity of maser condensation emission (increasing of one and decreasing of the other) can be explained by passing of the magneto hydrodynamic shock across regions of enhanced gas concentration.Comment: 9 pages with 2 figures, accepted for publication in Astronomy Letter

    Synthesis and design of suspended substrate stripline filters for digital microwave power amplifiers

    Get PDF
    In this paper, a synthesis method for suspended substrate stripline filters for digital microwave power amplifier applications is presented. The synthesis method combines a lumped element and full-wave mixed approach in a very efficient way. In order to achieve high amplifier efficiency the filter must exhibit a high input impedance in the stopband. This has been implemented for the first time by using a capacitively end coupled filter combined with stepped impedance resonators. A third order filter was designed. Simulations show that the final stage drain efficiency of the power amplifier and suppression of out-of-band frequency components can be significantly improved when the new structure is used
    corecore