137 research outputs found

    A proposal of a UCN experiment to check an earthquake waves model

    Full text link
    Elastic waves with transverse polarization inside incidence plane can create longitudinal surface wave (LSW) after reflection from a free surface. At a critical incidence angle this LSW accumulates energy density, which can be orders of magnitude higher than energy density of the incident transverse wave. A specially arranged vessel for storage of ultracold neutrons (UCN) can be used to verify this effect.Comment: 8 pages 3 figures added a paragraph on vibrations along surface at critical angl

    Preparation and optical characterization of Cu2ZnGeSe4 thin films

    Full text link
    Cu2ZnGeSe4 (CZGSe) films have been fabricated by ion beam sputtering onto glass substrates at a substrate temperature of 300 and 420 K. CZGSe films were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy and by the method of normal incidence transmittance and reflectance. XRD studies reveal an improved crystallinity of the polycrystalline CZGSe films with tetragonal structure when the substrate temperature was increased. The refraction index and extinction coefficient were extracted from the optical measurements. Spectral dependence of the absorption coefficient and the energy band gaps values of CZGSe films were also determinedFinancial supports from IRSES PVICOKEST 269167, MICINN projects (KEST-PV; ENE2010- 21541-C03-01/-02/-03) and FRCFB 13.820.05.11/BF projects are acknowledged. RC also acknowledges financial support from Spanish MINECO within the program Ramón y Cajal (RYC-2011-08521

    Wide band-gap tuning Cu2ZnSn1-xGexS4 single crystals: Optical and vibrational properties

    Full text link
    The linear optical properties of Cu2ZnSn1-xGe x S4 high quality single crystals with a wide range of Ge contents (x=0.1, 0.3, 0.5, 0.7, 0.9 and 1) have been investigated in the ultraviolet and near infrared range using spectroscopic ellipsometry measurements. From the analysis of the complex dielectric function spectra it has been found that the bandgap E 0 increases continuously from 1.49eV to 2.25eV with the Ge content. Furthermore, the evolution of the interband transitions E 1A and E 1B has been also determined. Raman scattering using three different excitation wavelengths and its analysis have been performed to confirm the absence of secondary phases in the samples, and to distinguish between stannite, wurtzite, wurzstannite and kesterite structures. Additionally, the analysis of the high resolution Raman spectra obtained in samples with different [Ge]/([Ge]+[Sn]) ratios allows describing a bimodal behavior of the dominant A modes. The understanding of the incorporation of Ge into the Cu2ZnSnS4 lattice is fundamental in order to develop efficient bandgap engineering of these compounds towards the fabrication of kesterite based solar cells with enhanced performanceThis work was supported by the Marie Curie-ITN project (KESTCELL, GA: 316488), Marie Curie-IRSES project (PVICOKEST, GA: 269167), AMALIE (TEC2012-38901-C02-01) and SUNBEAM (ENE2013-49136-C4-3-R) project funded by the Spanish Ministry of Economy and Competitiveness. RC acknowledges financial support from Spanish MINECO within the Ramón y Cajal program (RYC-2011-08521

    Spectroscopic ellipsometry study of Cu2ZnSnS4 bulk poly-crystals

    Get PDF
    The linear optical properties of Cu2ZnSnS4 bulk poly-crystals have been investigated using spectroscopic ellipsometry in the range of 1.2-4.6 eV at room temperature. The characteristic features identified in the optical spectra are explained by using the Adachi analytical model for the interband transitions at the corresponding critical points in the Brillouin zone. The experimental data have been modeled over the entire spectral range taking into account the lowest E0 transition near the fundamental absorption edge and E1A and E1B higher energy interband transitions. In addition, the spectral dependences of the refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity values have been accurately determined and are provided since they are essential data for the design of Cu2ZnSnS4 based optoelectronic devicesThe research leading to the presented results was partially supported by the European Project INFINITE-CELL (Ref. H2020-MSCA-RISE-2017-777968, 2017–2021, www.infinitecell.eu) and the Spanish MINECO Projects “WINCOST” (ENE2016-80788-C5-2-R) and PHOTOMANA (TEC2015- 69916-C2-1-R). The authors from the Institute of Applied Physics appreciate the financial support from STCU 6224 and from the Institutional Project No. CSSDT 15.817.02.04

    Growth, crystal structure, and properties of Cu2Zn1-xCdxSnS4 solid solutions

    Get PDF
    The phase diagram of the Cu 2 CdSnS 4 –Cu 2 ZnSnS 4 system was constructed using data on differential thermal, X-ray phase and microstructure analysis methods. The diagram can be attributed to the first type according to the Rosebohm classification. The Cu 2 CdSnS 4 –Cu 2 ZnSnS 4 solid solution single crystals were grown by chemical vapor transport using iodine as a transport agent. Their structure and unit cell parameters as well as compositional dependences of lattice parameters, pycnometric, X-ray densities and microhardness were determined. It was found that the Vegard's law is fulfilled in solutions studied

    ВЫРАЩИВАНИЕ И СВОЙСТВА МОНОКРИСТАЛЛОВ Cu2ZnSnS4

    Get PDF
    Polycrystalline ingots bridgman grown and by chemical method reactions of gas-transport connections Cu2ZnSnS4 single crystals of different forms: needle-like, plate and prismatic are received. The composition, structure of the grown single crystals was determined and unit cell parameters were calculated. The melt temperature was determined using DTA method. Transmission spectra in the region of intrinsic absorption edge were studied in temperature interval 20-300 K. The band gap width of Cu2ZnSnS4 single crystals was determined, its temperature dependency has been built and the calculation of the indicated dependency has been carried out. It was shown, that the experimental and calculated values are in good correlations.Методом химических газотранспортных реакций выращены монокристаллы соединения Cu2ZnSnS4. Определены состав, структура и температура плавления полученных кристаллов. Исследованы спектры пропускания в области края собственного поглощения в интервале температур 20-300 К. Определена ширина запрещенной зоны указанных кристаллов и построены ее температурные зависимости

    Towards the growth of Cu2ZnSn1 xGexS4 thin films by a single stage process Effect of substrate temperature and composition

    Get PDF
    Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal annealing in S containing Ar atmosphere are studied. The effect of the substrate temperature during evaporation and the initial composition of the precursor powder on the growth mechanism and properties of the final CZTGS thin film are investigated. The microstructure of the films and elemental depth profiles depend strongly on the growth conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards higher diffraction angles and frequencies respectively. A Raman mode at around 348-351 cm-1 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge loss. This fact allows increasing the substrate temperature up to 350º C during the evaporation, forming a high quality kesterite material and therefore, reducing the deposition process to one single stageRC acknowledges financial support from Spanish MINECO within the Ramón y Cajal programme (RYC-2011-08521) and VIR for the Juan de la Cierva fellowship (JCI-2011-10782). GB also acknowledges the CSIC-JAE pre-doctoral program, co-funded by the European Social Fund. This work was supported by the Marie Curie-IRSES project (PVICOKEST, GA: 269167), Marie Curie-ITN project (KESTCELL, GA: 316488), DAAD project (INTERKEST, Ref: 57050358), and MINECO projects (SUNBEAM, ENE2013-49136-C4-3-R) (TEC2012-38901-C02-01). A. Scheu is acknowledged for GDOES measurement

    ИССЛЕДОВАНИЕ СИСТЕМЫ Cu2ZnSnS4-Cu2ZnSnSe4

    Get PDF
    Crystals of Cu2ZnSnS4, Cu2ZnSnSe4 compounds and Cu2ZnSnS4х Se4(1-х) solid solutions have been grown by directional crystallization of the melt. The composition of the grown crystals was determined by X-ray microprobe analyses, XRD was used for determination of their structure. It was established, that both starting compounds Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSnS4х Se4(1-х) solid solutions on their base are crystallized in tetragonal structure. Unit cell parameters a and c change linearly in accordance with Vegad’s law. State diagram was built using DTA method, which are characterized with small temperature interval of crystallization and it can be attributed to the firs type on Rozebom’s classification. Microhardness and density of the indicated crystals have been measured. It has been established, that microhardness changes with maxima on composition x , density - linearly.Направленной кристаллизацией расплава (вертикальный метод Бриджмена) выращены кристаллы соединений Cu2ZnSnS4, Cu2ZnSnSe4 и твердых растворов Cu2ZnSnS4 х Se4(1- х ). Методом микрорентгеноспектрального анализа определен состав полученных кристаллов, рентгеновским методом - их структура. Установлено, что как исходные соединения Cu2ZnSnS4, Cu2ZnSnSe4, так и твердые растворы на их основе кристаллизуются в тетрагональной структуре. Параметры элементарной ячейки а и с изменяются линейно в соответствии с законом Вегарда. Методом ДТА построена диаграмма состояния системы Cu2ZnSnS4 - Cu2ZnSnSe4, которая характеризуется небольшим интервалом кристаллизации, и ее можно отнести к первому типу по классификации Розебома. Измерена микротвердость и плотность указанных кристаллов. Установлено, что микротвердость с составом х изменятся с максимумом, плотность - линейно

    Towards the growth of Cu2ZnSn1-xGexS4 thin films by a single-stage process: Effect of substrate temperature and composition

    Full text link
    Cu2ZnSn1-xGexS4 (CZTGS) thin films prepared by flash evaporation of a Zn-rich Cu2ZnSn0.5Ge0.5S4 bulk compound in powder form, and a subsequent thermal annealing in S containing Ar atmosphere are studied. The effect of the substrate temperature during evaporation and the initial composition of the precursor powder on the growth mechanism and properties of the final CZTGS thin film are investigated. The microstructure of the films and elemental depth profiles depend strongly on the growth conditions used. Incorporation of Ge into the Cu2ZnSnS4 lattice is demonstrated by the shift of the relevant X-ray diffraction peaks and Raman vibrational modes towards higher diffraction angles and frequencies respectively. A Raman mode at around 348-351 cm-1 is identified as characteristic of CZTGS alloys for x = [Ge]/([Sn]+[Ge]) = 0.14-0.30. The supply of Ge enables the reduction of the Sn loss via a saccrifical Ge loss. This fact allows increasing the substrate temperature up to 350º C during the evaporation, forming a high quality kesterite material and therefore, reducing the deposition process to one single stageRC acknowledges financial support from Spanish MINECO within the Ramón y Cajal programme (RYC-2011-08521) and VIR for the Juan de la Cierva fellowship (JCI-2011-10782). GB also acknowledges the CSIC-JAE pre-doctoral program, co-funded by the European Social Fund. This work was supported by the Marie Curie-IRSES project (PVICOKEST, GA: 269167), Marie Curie-ITN project (KESTCELL, GA: 316488), DAAD project (INTERKEST, Ref: 57050358), and MINECO projects (SUNBEAM, ENE2013-49136-C4-3-R) (TEC2012-38901-C02-01). A. Scheu is acknowledged for GDOES measurement

    First observation of a narrow charm-strange meson DsJ(2632) -> Ds eta and D0 K+

    Full text link
    We report the first observation of a charm-strange meson DsJ(2632) at a mass of 2632.6+/-1.6 MeV/c^2 in data from SELEX, the charm hadro-production experiment E781 at Fermilab. This state is seen in two decay modes, Ds eta and D0 K+. In the Ds eta decay mode we observe an excess of 49.3 events with a significance of 7.2sigma at a mass of 2635.9+/-2.9 MeV/c^2. There is a corresponding peak of 14 events with a significance of 5.3sigma at 2631.5+/-1.9 MeV/c^2 in the decay mode D0 K+. The decay width of this state is <17 MeV/c^2 at 90% confidence level. The relative branching ratio Gamma(D0K+)/Gamma(Dseta) is 0.16+/-0.06. The mechanism which keeps this state narrow is unclear. Its decay pattern is also unusual, being dominated by the Ds eta decay mode.Comment: 5 pages, 3 included eps figures. v2 as accepted for publication by PR
    corecore