127 research outputs found

    Muons with E_th >= 1 Gev and Mass Composition in the Energy Range 10^{18}-10^{20} ev Observed by Yakutsk Eas Array

    Full text link
    The ratio of the muon flux density to charged particle flux density at distances of 300 and 600 m from the shower axis (\rhom(300)/\rhos(300) and \rhom(600)/\rhos(600)) is measured. In addition, the energy dependence of \rhom(1000) is analysed for showers with energies above 101810^{18} eV. A comparison between the experimental data and calculations performed with the QGSJET model is given for the cases of primary proton, iron nucleus and gamma- ray. We conclude that the showers with \E\ge3\times10^{18} eV can be formed by light nuclei with a pronounced fraction of protons and helium nuclei. It is not excluded however that a small part of showers with energies above 101910^{19} eV could be initiated by primary gamma-rays.Comment: 19th European Cosmic Ray Symposium, Aug 30 - Sep 3 2004, Florence, Italy. 3 pages, 1 figure. Submitted for publication in International Journal of Modern Physics

    EAS spectrum in the primary energy region above 10 to the 15th power eV by the Akeno and Yakutsk array data

    Get PDF
    The extensive air showers spectrum on scintillation desity Rko in primary energy region E sub approx. 10 to the 15th power - 10 to the 20th power eV on the Yakutsk array data and recent results of the Akeno is given

    Influence of Primary Cosmic Radiation Mass Composition on the Estimation of Eas Energy

    Full text link
    At the Yakutsk EAS array E_em is determined by using measurements of EAS Cherenkov light flux and charged particle flux. It is known from calculations that these characteristics depend on a sort of primary particle and, therefore, the estimation of E_em depends on a primary particle mass. In the work the dependence of the E_em/E_0 ratio on the energy is given and experimental data are compared with calculations by the QGSJET model. The calculations have been carried out for the primary proton and iron nucleus. The average calculated meaning of the value of E_em/E_0 ratio (between the proton and iron nucleus) within experimental errors is in agreement with experimental data that doesnt contradict to the mixed mass composition of primary cosmic radiation.Comment: 19th European Cosmic Ray Symposium. Aug 30 - Sep 3 2004, Florence, Italy. 3 pages, 1 figure. Subbmitted for publication in International Journal of Modern Physics

    Azimuthal modulation of the event rate of cosmic ray extensive air showers by the geomagnetic field

    Get PDF
    The Earth's magnetic field effect on the azimuthal distribution of extensive air showers (EAS) of cosmic rays has been evaluated using a bulk of the Yakutsk array data. The uniform azimuthal distribution of the EAS event rate is rejected at the significance level 10^(-14). Amplitude of the first harmonics of observed distribution depends on zenith angle as A1=0.2*sin^2(theta) and is almost independent of the primary energy; the phase coincides with the magnetic meridian. Basing upon the value of measured effect, the correction factor has been derived for the particle density depending on a geomagnetic parameter of a shower.Comment: 4 pages, 3 figures in ps file

    All particle energy spectrum of cosmic rays in 10 to the 15th power - 10 to the 20th power eV region

    Get PDF
    Average estimations of the shower energy components are presented and their sum gives E sub 0 (Rho sub 600) - an average function of the relation of E sub 0 with the shower size parameter Rho sub 600 measured at the Yakutsk extensive air showers (EAS) array. Using this relation to the EAS spectrum obtained at the Akeno and Yakutsk arrays the energy spectrum of the cosmic ray total flux within 15 lg (E sub 0,eV) 20 by the EAS methods is recovered

    Fluctuations of Xmax and Primary Particle Mass Composition in the Range of Energy 5 10^{17} - 3 10^{19} ev by Yakutsk Data

    Full text link
    The experimental distributions of \Xmax obtained with the Yakutsk EAS array at fixed energies of 5Ă—10175 \times10^{17}, 1Ă—10181\times10^{18} and 5Ă—10185\times10^{18} eV are analysed. A recent version of the QGSJET model is used as a tool of our analysis. In the framework of this model, the most adequate mass composition of primary particles satisfying the experimental data on \Xmax is selected.Comment: 19th European Cosmic Ray Symposium, Aug 30 - Sep 3 2004, Florence, Italy. 3 pages, 1 figure. Submitted for publication in International Journal of Modern Physics
    • …
    corecore