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ALL PARTICLE ENERGY SPECTRUM OF COS_IC RAYS

IN 1015 to 1020eV Region

• 4
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ABSTRACT

Average estimations of the shower energy compo-
nents are presented and their sum gives (E o

(P6oo))- an average function of the relation

of E o with the shower size parameter p6eo measu-
red at the Yakutsk EAS array. Using this rela-
tion to the EAS spectrum obtained at the Akeno
and Yakutsk arrays the energy spectrum of the

cosmic ray total flux within 15_lg(Eo,[eVJ) _20

by the EAS methods is recovered.

1. Introduction. Earlier beginning from 1971 we esti-

mated the primary energy E o on the atmospheric Cerenkov

light flux density on the core distance 400 m at the Yakutsk
EAS array [1] . Last years the experimental data on a maximum
depth, muon energy spectrum and other average characteristics
of the EAS development are obtained which are important to
estimate the shower energy components. By a balance of the

latters one can determine the E o.

2. Estimation of E o b_ Energy Balance Method. The sho-

wer primary energy consists of the next components: E o = Eei+

E_i+ EhA+ Ee_ Eh+ E_+ E_= Ei+ E, where the first three terms

show the energy loss into the atmosphere ionization (E i) by

electrons, muons and by splitting the nuclei and the last
four ones - the energy dissipated in the earth in the form
of electron-photon, nuclear-active, muon and neutrino compo-
nents (E). Our estimation [2]differs from one [_] by account-
ing of the atmospheric Cerenkov li@ht losses [5]on which E -

a main component of the E o is estimated and by use of the _w

measurement results of the muon energy spectrum for Ej_.

Eel. For 1017_ Eo_1019eV the relation of Eei with
the atm-_pheric Cerenkov light total flux q_,(in number of

photons) and from the depth of maximum of showers Xma x 1
(g.cm -2) is given by Eel = 2.07.104(1.04+5.8.10-_'Xmax )- •

. _-1. _, ,eV where _= _m "_a L1 is a light transmittance
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Average estimations of the shower energy compo­
nents are presented and their sum gives <. E 

o 
(P600 ) > - an average function of the relation 
of Eo with the shower size parameter P600measu­
red at the Yakutsk EAS array. Using this rela­
tion to the BAS spectrum obtained at the Akeno 
and Yakutsk arrays the energy spectrum of the 
cosmic ray total flux within 15 ~lg(E ,[eV]) ~ 20 

o 
by the EAS methods is recovered. 

1. Introduction. Earlier beginning from 1971 we esti­
mated the primary energy Eo on the atmospheric Oerenkov 
light flux density on the core distance 400 m at the Yakutsk 
EAS array (1] • Last years the experimental data on a m~um 
depth, muon energy spectrum and other average characteristics 
of the EAS development are obtained which are important to 
estimate the shower energy components. By a balance of the 
latters one can determine the Eo. 

2. Estima~ion of Eo by Energy Balance Method. The sho­
wer primary ene~gy consists of the next components: Eo : Eei+ 
E~i+ Ebi+ Eei ~+ E~+ Ev: Ei+ E, where the first three terms 
show the energy loss into the atmosphere ionization (Ei ) by 
electrons, muons and by splitting the nuclei and the last 
four ones - the energy dissipated in the earth in the form 
of electron-photon, nuclear-active, muon and neutrino compo­
nents (E). Our estimation [2] differs from one [4] by account­
ing of the atmospheric Cerenkov light losses [5]on which E .­
a main component of the Eo is estimated and by use of the H~w 
measurement results of the muon energy spectrum for E JA. • 

Eei • For 1017 ~ Eo~101gev the relation of Eei with 
the atmospheric Cerenkov light total flux~H(in number of 
photons) and from the depth of maximum of showers Xmax 

-2 1 4( -4 )-1 (g.cm ) is given by Eei = 2.07· 0 1.04+5.8.10 .Xmax • 
• .1'-1. 'PH ,eV where !f = fm .:fa L.1 is a light transmittance 
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Coefficient by atmosphere due to molecular (Rayleigh _m )

and aerosol (_a) scatterings. According to [6 et all a

main aerosol part is i_ a ground layer of _1 km thickness.

If to asst_ae that the aerosol is concentrated at depth

900 g.cm -2 and 3= 0.6 at Eo = 1016eV them 3= 0.62 at Eo
1018eV. According to these estimations we took J = 0.60 ±
0.04. Then due to the experimental dependeuce Xmax from _600

and the observed correlation of qoH with• _6o0 [7_we found

the average value lg(_L,{eV_ = (0.98±0.05).1gp6oo +
+0.079

+ q7.620.0.09 7.

_" Its value is small and is observed to be equal
to the average meaning expected from calcttlations by diffe-

rent EAS development models, E_i = (0.12 + 0.09).E_.

E_. If to suppose that the average part of h_drons
on the-'atmosphere Ph(X) = 0.02+0.01 from Ne(X) , average

energy of the nuclear splitting 8 nd = 0.5 GeV [8] and add-

ing the usual ionization losses of hadrons we found Ehi =

(5.6±2.2).I0-2.Eei . If Ph(X) and $ nd are somewhat over-
estimated then it is probably quite compensated in estima-

tion of Ehi by not accounted here the effect of photonucle-
ar reactions [9].

E_ . When the muo_ component registration threshold

_,t_'-----I GeV, as it is at the Yakutsk array, then E_ =
_'N)_ (> I GeV) where the much component energy _ =

= (>IGev)]-I.
•(1 + a-1 )_for the energy spectrum of the shower muons

in form N_ (>_,GeV)oc( 8_+ a)-_. which refers to one mu-
ch wi_a _a _ _ev. uaAcu_awions snow that when the muons
generated-ouly due to decay of pio_s and kaons then the
much energy spectrum does not almost depemd on the EAS de-
velopment model and the _ very poorl_ depends on Eo. From

umique measurement resplts of the much energy spectrum in
showers with Ne = 2.10_at sea level [10] we find that a =

= 10 GeV, _ = 1.64 and 8_ = 18.2 Ge¥. At 8_,th r = 1.1

GeV _11_ , 5 GeV _12_ and in the case Ne = 10° [13] the re-
sults confirm the mentioned approximation (Fig.l). Using

_ = (16 _ 3)GeV and the observed relation lgN_ (> 1 GeV)=

= (0.8_ + 0.08).lg_soo + 6.@9I+0"0_2• -0.0_6 _3_ we obtain
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_= _aa+O.086
ls(_,#,[eV])- ( o.8_o.o8).iS9_oo+ "_'_-o.Io7

EO_" Assuming that the neutrino carries away 27, 90 and 67%
the much energy due to decay of pions, kaons and muoms,

respectively, and the ratio of kaons to pions is 0.22±0.09
[8] we obtain E_ = (0.6@ + 0.18).E_.

Adding all the above _omponent_ of E^ based consider-
ably on the experiment the average estimation is as follows:

_ _mh+0.066
lg(E o, [eV] ) = (0.98 + o.03)'lgp6o0 + ""'J_-0.077"

_. Euergy Spectrum of the primaries. Using the above estima-
tion of E o for the EAS spectrum obtained ca the Akeno and
Yakutsk array data in a corrected.form [31the energy spect-

rum of all the particles at energzes 15_<lg(E_, [eV])_20 is_recovered. It is show_ in Fig.2 where the daaSed lines corre
spored to the results at E n + A E n. As it is seen this spectrum
reveals sigaificaut irregularities and being approximated by

a form J(Eo)dEoOC Eo_-ldEo it has the following exponents:

algE o 15.*16. 16.*17.5 17.5e18.2 18.2_18.9 18.9_19.4 19.@-20.

+I 2.59+.18 2.91+.13 2.99_+.04 3.63+.05 2._7±.09 3.48±.11

Integral intensities with account of accuracy of the determi-
nation of E o are as follows:

lg(Eo, [ e'V'J) 15 16 17 19

I(>Eo),m.s.sr (2.3±0.6)10 -6 (5±1.6)10 -8 (6+2)10 -12 (3±1)I0 -I_

_-%!05 u O '_.. Po,eV
4Qk x -2 \

•10 "_ O-:) ".. \ ',... '.q

2'+

• .,, ++.+,_.+
+'+ _ Ix • \ ........ _ E..

_3 -- _ +++ .... "\'', ", "

:_ '_ ++ .+. -, ',

; \, - ++++,++"-') "%_,, ". _ _p',{,+'_' ". Xl

_-,0 'd+_ '.t + " , _ "
\, _ .s, ..........

X ; .",........i , £_., +,0.,eV _uJ° @BM Y_I , Tli ....

..,,._.

11.oe/

.... E_ t,Eo o_ [3] IZ'ig.1. 1- [_o], 2- [1_], .........,,,,
,o'' ,p,, _.,,v ,,o" *_ ,@_-ha],_ [_],

5- N_ (>8_)o_(_,_ . 10) -1"6+ Fig,2, !-Yak_tsk.a_d 2 -
Akeno [31, 3- [1¢J, ¢-
[15] , 5- at Eo + aE o
(upper) and En-- aE_-
(lower), 6 - _16]. _

192 OG 5.1-15 

19(E}{, [eV)) = ( 0.84%0.08) .lg pGOO + 16.699:g:~g~ 
k. Assuming that the neutrino carries away 27, 90 and 67% 
of the muon energy due to decay of pions, kaons and muons, 
respectively, and the ratio of kaons to pions is 0.22±0.09 
[8) we obtain E ~ = (0.64 :t 0.18).Ejt • 

Adding all the above components of E based consider­
ably on the experiment the average est1ma~ion is as follows: 

19(Eo,[eV]) = (0.98 ± 0.03)·lgP600 + 17.754:g:~~. 
3. Energy spectrum of the Primaries. Using the above estima­
tion of Eo for the EAS spectrum obtained on the Akeno and 
Yakutsk array data in a corrected form [31 the energy spect­
rum of all the particles at energies 1,5 ~ 19(E , [eV])!:: 20 is 
recovered. It is shown in Fig.2 where the daSfted lines corre­
spond to the results at Eo ± AEo• As it is seen this spectrum 
reveals significant irregUlarit~es and being approximated by 
a form J(Eo)dEoCX: E~4' -1dEo it has the following exponents: 
AlgEo 1,5.+16. 16.+17.,5 17.,5+18.2 18.2+18.9 18.9+19.4 19.4+20. 
~ +1 2.59±.18 2.91±.13 2.99±.04 3.63±.05 2~47±.09 3.48±.11 
Integral intensities with account of accuracy of the determi­
nation of Eo are as follows: 

19(Eo ' [eVl) 15 16 17 19 
I(~Eo),m.s.sr (2.3±0.6)10-6 (5±1.6)10-S (6±2)10-12 (3±1)10-14 

Fig.1. 1- [10], 2- [131, 
3- [ 12 ] t 4- [11] t 

,5- N}i (> E}l )oc ( E}t + 10) -1 • 64 Fig.2. 1'""!'Yakutsk and 2 -
Akeno [31, 3- [14], 4 -
[15] , ,5- at Eo + AEo 
(upper) and E - l!.E 
( lower), 6 - ~16]. 0 
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4. Discussion. A good agreement with results of energ_
balance of small EAS [14] and of a direct calorimetry [15J

testifies a correctness of Eo-p_oo obtained by us. The latter

one is lgEo=(0.94+ 0.03)(lgNe-8.042) + 17.754+0]0_ for mea-
surements at Akeno (920 g.cm-2).

For lg(E_, [eV])_19 the spectrum reveals a consistent

steepening w_th energy Eo which considerably differs from
its earlier accepted form [16 et al]. It more c_rresponds to
a picture expected at the diffusion of the mixture of the
alactic originnuclei [17]. The irregularity (rather "bump"-
ype) at 19_<lg(E, [eV])_20 is difficult to interpret by
evidence of an e_ragalactic component: the particles of
these energies also arrive from low galactic latitudes main-

ly and their anisotropy phase changes with E o [18 et all.
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