EAS SPECTRUM IN THE PRIMARY ENERGY REGION ABOVE 10° eV BY THE AKENO AND THE YAKOTSK ARRAY DATA
D.D.Krasilnikov, S.P.Knurenko, A.D.Krasilnikov,

Institute of Cosmophysical Research \& Aeronomy, Lenin Ave., 31, 677891 Yakutsk, USSR

ABSTRACT

The EAS spectrum on scintillation density ρ_{600} in primary energy region $E=10^{15}-10^{20}$ eV on the Yakutsk array data and recent results of the Akeno is given.

1. Introduction

At present the EAS observations at sea-level take the widest energy range of primaries. The obseryed EAS spectra on particle number N in a shower at $E \leqslant 10^{18} \mathrm{eV}$ and on particle density ρ_{600} at a distance $\mathrm{R}=600 \mathrm{~m}$ from axis at $\mathrm{E}_{0}>$ $3.10^{17} \mathrm{eV}$ are obtained. Either for the recovery of the spectrum on E or for the comparison it is reasonable to obtain these resilts in aform of "corrected"spectra where effects of the development fluctuations (different for N and ρ_{600}) and N and ρ_{600} measurement dispersions (different for various arrays) are taken into account. To consider the EAS spectrum on the whole it is required also to use in the analysis a common basic unit of measurement of the shower particle number (density) and a common parameter of the shower size. Yet it is reasonable and possible only on the basis of ρ_{600} : there is the experimental estimation of ρ_{600} and E' relationship and only in the Akeno array data there is the possibility of transition from N to ρ_{600}.

2. Results

a) Yakutsic. In the central part of the array [4] the registration of showers was triggered by a small master (SM) and on the whole array - by a big master (BM). For the analysis the shower events were selected with an axis within fixed receiving areas (different for various ranges of ρ_{600}) and for those periods of the array operation T, when $\sim 100 \%-$ efficiency of registration and levels of $\delta \rho_{600}$ summary relative deviations of fluctuations of the shower development and their measurement dispersions obtained from a total measurement simulation [5] and accepted for the analysis [1,2] were provided. Each shower was individually treated as follows: 1) from approximation of measured particle densities
by $\rho(R)_{i} \propto R^{-n_{i}}$ [5] n_{i} and $\rho_{600, i}$ were determined; 2) $\rho_{600, i}$ was reduced to the zenith angle $\theta=0^{\circ}$, atmospheric temperatore 240 K and pressure 1006 mb (ρ_{600} and E_{o} relationship at the atmospheric depth $X=1025 \mathrm{~g} . \mathrm{cm}^{-2}$ at these parameters was found) using the absorption length measured in the experimont $\lambda\left(\rho_{600}\right)=(218 \pm 15)+(172 \pm 15) \cdot \sec \theta, \mathrm{g.cm}^{-2}, \theta<$ 60°, a barometric coefficient $\alpha_{p}=-0,25 \pm 0.03 \%$ per mb and temperature coefficient $d_{T}\left(\rho_{600}\right)=0.30 \pm 0.11 \%$ per K. For $-0.35<\lg \rho_{600}<0.6$ as an intermediate parameter of shoowar size the $\rho_{-200, i}$ having the absorption length $\lambda\left(\rho_{300}\right)=$

- $\rho_{300} 0.89 \pm 0.02$ were used.

Data used in spectrum construction on the whole have following common characteristics:

$$
\lg \left[\rho_{600}, \mathrm{~m}^{-2}\right] \quad \delta \rho_{600} \quad \mathrm{ST} \Omega, \mathrm{~m}^{2} \cdot \mathrm{~s} \cdot \mathrm{sr}
$$

SM
BM

$$
\begin{array}{rrr}
-0.35+1 & 0.40 \cdot 0.17 & (0.16+4.33) \cdot 1013 \\
1+1.5 & 0.22+0.21 & (1.88+4.40) \cdot 1015 \\
>1.5 & 0.21 & 5.69 \cdot 1015
\end{array}
$$

Introducing into the observed intensities the correctrons for the summary effect of the development fluctuations and measurement dispersions with the correction factor [2] K= $=0.98\left[1+\delta \rho_{600}^{2}\right]-0.5 \mathscr{(x - 1)}$ the differential $f_{0}\left(\rho_{600}\right)$ and the integral $F_{0}\left(>\rho_{600}\right)$ corrected EAS spectra (see Figure) were obtained.
The differential spectrum for $-0.3<\lg \rho_{600}<1.7$ displays significant irregularities and at the description by $f_{0}\left(\rho_{600}\right)$ $=A\left(\rho_{600} / 10\right)^{-X-1}$ has the following parameters:

lg ρ_{600}	$-0.3+0.5$	$0.5+1.2$	$1.2+1.7$	$1.7+2.3$
lg A	$-13.37+0.04$	$-13.63+0.02$	$-13.92+0.05$	$-13.20+0.09$
$x+1$	$2.95+0.04$	$3.58+0.05$	$2.45+0.10$	$3.43+0.11$

The spectrum on ρ_{600} obtained by the relationship $\rho_{600}=$ $=(2.05 \pm 0.11) \cdot\left(Q_{400} / 10^{7}\right)^{0.99 * 0.02}$ from the transform tin of the density spectrum of the shower atmospheric Cerenkov light $Q_{400}[1]$ and having the form of the spectrum of loss in atmosphere confirms the change for $-0.3<\lg \rho_{600}<1$.

In the Figure a dashed line corresponds to the observed spectrum on Haverah Park data [6] reduced by us to the scindilation density $\rho 600$ due to [7]. In this case according
to [8] the effect of $\delta \rho_{600}$ at $\lg \rho_{600} \leqslant 1$ is small ($\leqslant 10 \%$ on intensities) and at $l_{g} \rho_{600} \geqslant 1$ somewhat increases. Taking into account this fact we find a satisfactory agreemint of the results of both arrays. It is remarkable that the Haverah Park spectrum reveals also the steepening tendenny for $1.8 \leqslant 1 \mathrm{~g} \rho_{600} \leqslant 2.3$.

b) Akeno. The observed EAS spectrum at $\sec \theta=1.1$ (at the depth $1011 \mathrm{g.cm}{ }^{-2}$) is given by $f\left(N_{e}\right) d N_{e}=A\left(N_{e} / 10^{6}\right)^{-x} N_{N}-1$ with $A=(1.2 \neq 0.2) \cdot 10^{-13} \mathrm{~m}^{-2} \cdot \mathrm{~s}^{-1} \mathrm{sr}^{-1} \cdot$ part. $^{-1},{ }_{\mathrm{e}}^{\mathrm{e}}=1.49 \pm 0.17$ for $5<l_{g N}<6$ and $x_{N}=1.80 \pm 0.12$ for $6<l_{\mathrm{g}}^{\mathrm{N}}{ }_{\theta}<8$. Some corrections were made: the spectrum is reduced to the Yakutsk level $1025 \mathrm{~g} \cdot \mathrm{~cm}^{-2}$ with absorption length $\lambda\left(\mathrm{N}_{\theta}\right)=$ $235 \mathrm{~g} . \mathrm{cm}^{-2}$; the effect of the shower development fluctuatiohs was taken into account on [9] with average correction factor $\bar{K}_{\delta}=0.89 \cdot\left[1+\delta N_{e}{ }^{2}\right]^{-0.5 \Re_{N}\left(x_{N}-1\right)}=0.77$ where the deviations were taken according to [10] to be 0.7 for $5<\operatorname{lgN}_{e}<6$ and 0.44 for $6<\operatorname{lgN}_{e}<8$.

From $[11,12]$ we find $\lg \rho_{600}^{*}=\lg \left[\rho_{600, \mathrm{e}}^{*}+\rho_{600, \mu}^{*}\right]=$ $=0.961 \mathrm{lgN}_{e}-7.46$ at the depth $966 \mathrm{g.cm}{ }^{-2}$ at $T=279 \mathrm{~K}$.

Recounting ρ_{600} to depth $1025 \mathrm{~g} \cdot \mathrm{~cm}^{-2}$ with $\lambda\left(\rho_{600}\right)=390$ $\mathrm{g} . \mathrm{cm}^{-2}$ at $T=240 \mathrm{~K}$ with $\alpha_{T}=0.3 \%$ per K and to the Yakutsk basic unit of muon equivalent having the relationship $u_{\mu} / u_{e}=$ $=1.15$ with the electron equivalent unit [3] the relationship $1_{g} \rho_{600}=0.96 \cdot 1_{\mathrm{gN}}^{e}-7.534$ is obtained.

In the Figure the differential and integral corrected EAS spectra on ρ_{600} from the Akeno data are given. For Ig IF_{60} <0.12 we obtain: $f_{0}\left(\rho_{600}\right)$ d $\rho_{600}=A_{9}\left(\rho_{600} / 10^{-1.80}\right)^{-10}-1 d \rho_{600}$
with $A_{0}=(1.2 \pm 0.2) \cdot 10^{-5.297} 7^{-2} \cdot \mathrm{~s}^{-9} \cdot \mathrm{sr}^{-1}\left(\text { part. } / \mathrm{m}^{2}\right)^{-1}$, $\nsim=1.55 \pm 0.18$ for $-2.76<\lg _{g} \rho_{600}<-1.80$ and $\nsim=1.88 \pm 0.13$ for $\lg \rho_{600}>-1.80$.

3. Conclusion

In the considered 5-decade energy range the EAS spectrum on ρ_{600} reveals significant irregularities. For $\lg _{600}<1.2$ the steepening (rather consecutive) of inclination of $f\left(\rho_{600}\right)$ with increase of ρ_{600} occurs: $-x-1=-2.55 \pm 0.18 ;-2.88 \pm 0.12$; -2.95 ± 0.04 and -3.58 ± 0.05 for $\Delta l_{g} \rho_{600}=-2.76 \pm-1.8$; $-1.8 t-0.3 ;-0.3+0.5$ and $0.5+1.2$, respectively. At $\lg _{600}>1.2$ the irregularity is observed: $-\nsim-1=-2.45 \pm 0.1$ at $1.2<$ $\lg \rho_{600}<1.7$ and $-x-1 \leqslant-3$ at $1.7<1 g \rho_{600}<2.3$. We assume that four shower events with $\lg \rho_{600}>2.3$ from the spectrum of [6] if to eliminate the effects of methodical character could indicate the possible existence of the other irregularity in the range out of the control of the Yakutsk array.

References

1. Krasilnikov, D.D. íGr., (1983), Kosmicheskie lachi s energiei vyshe 1017 eV , Yakutsk, 117.
2. Krasilnikov, D.D. i dr., (1985), Izv.AN SSSR, ser.fiz. 49, No. 1.
3. Nagano, M. et al., (1984), J.Phys.G, 10, 1295.
4. Kerschenholz, I.M. et al. (1973), Proc.13-th ICRC, Denver, 4, 2507.
5. Dyakonov, M.N. et al., (1981), Proc.17-th ICRC, Paris, 2, 166 .
6. Bower, A.J. et al., (1981), Proc.17-th ICRC, Paris, 2. 166.
7. Bower, A.J. et al.,(1983), J.Phys.G,2, I. 53.
8. Brooke, G. et al., (1979), Proc.16-th ICRC, Kyoto, $8,13$.
9. Kalmykov, N.N., (1969), Yadernaya fizika, 10, 121.
10. Kulikov, G.V., (1973), Thesis, MGU.
11. Hara, T. et al., (1983), Proc.18-th ICRC, Bangalore, 11, 272.
12. Nagano, M. et al., (1984), J.Phys.Soc.Japan, 53, 1667.
