101 research outputs found

    The kinetic description of vacuum particle creation in the oscillator representation

    Full text link
    The oscillator representation is used for the non-perturbative description of vacuum particle creation in a strong time-dependent electric field in the framework of scalar QED. It is shown that the method can be more effective for the derivation of the quantum kinetic equation (KE) in comparison with the Bogoliubov method of time-dependent canonical transformations. This KE is used for the investigation of vacuum creation in periodical linear and circular polarized electric fields and also in the case of the presence of a constant magnetic field, including the back reaction problem. In particular, these examples are applied for a model illustration of some features of vacuum creation of electron-positron plasma within the planned experiments on the X-ray free electron lasers.Comment: 17 pages, 3 figures, v2: a reference added; some changes in tex

    Magnetocaloric and Magnetic Properties of Ni\u3csub\u3e2\u3c/sub\u3eMn\u3csub\u3e1-x\u3c/sub\u3eCu\u3csub\u3ex\u3c/sub\u3eGa Heusler Alloys: an Insight from the Direct Measurements and \u3ci\u3eab initio\u3c/i\u3e and Monte Carlo Calculations

    Get PDF
    We calculated magnetic exchange constants and magnetocaloric properties of Ni2Mn1-xCuxGa Heusler alloys by ab initio and Monte Carlo methods. The ab initio study of the influence of the Cu excess x on the strength of magnetic interactions revealed that Cu weakens Mn-Ni interaction and has a complex impact on the Mn-Mn interactions. Theoretically calculated magnetic phase diagram of Ni2Mn1-xCuxGa is in a good agreement with available experimental data. Calculated by the Monte Carlo method the isothermal magnetic entropy change Delta Smag in a Ni2Mn0.75Cu0.25Ga alloy is significantly smaller around the coupled magnetostructural phase transition temperature than the reported earlier experimental Delta Smag. This discrepancy is ascribed to an overestimation of the experimental Delta Smag at the magnetostructural phase transition. Theoretically determined adiabatic temperature change Delta Tad in Ni2Mn0.75Cu0.25Ga agrees well with Delta Tad measured experimentally by a direct method

    Lattice QCD Constraints on Hybrid and Quark Stars

    Full text link
    A QCD-motivated dynamical-quasiparticle model with parameters adjusted to reproduce the lattice-QCD equation of state is extrapolated from region of high temperatures and moderate baryonic densities to the domain of high baryonic densities and zero temperature. The resulting equation of state matched with realistic hadronic equations of state predicts a phase transition into the quark phase at higher densities than those reachable in neutron star interiors. This excludes the possibility of the existence of hybrid (hadron-quark) stars. Pure quark stars are possible and have low masses, small radii and very high central densities. Similar results are obtained for a simple bag model with massive quarks, fitted to reproduce the same lattice results. Self-bound quark matter is also excluded within these models. Uncertainties in the present extrapolation re discussed. Comparison with standard bag models is made.Comment: 13 p., 8 figs., 7 tables, Version accepted by Phys. Rev.

    Low-energy theorems of QCD and bulk viscosity at finite temperature and baryon density in a magnetic field

    Full text link
    The nonperturbative QCD vacuum at finite temperature and a finite baryon density in an external magnetic field is studied. Equations relating nonperturbative condensates to the thermodynamic pressure for T0T\neq 0, μq0\mu_q \neq 0 and H0H\neq 0 are obtained, and low-energy theorems are derived. A bulk viscosity ζ(T,μ,H)\zeta(T, \mu, H) is expressed in terms of basic thermodynamical quantities describing the quark-gluon matter at T0T\neq 0, μq0\mu_q \neq 0, and H0H\neq 0. Various limiting cases are also considered.Comment: 12 pages; v2: title changed, new section about bulk viscosity and new references added; v3: new discussion adde

    Noncommutativity and Lorentz Violation in Relativistic Heavy Ion Collisions

    Get PDF
    The experimental detection of the effects of noncommuting coordinates in electrodynamic phenomena depends on the magnitude of |\theta B|, where \theta is the noncommutativity parameter and B a background magnetic field. With the present upper bound on \theta, given by \theta_{\rm bound} \simeq 1/(10 {\rm TeV})^2, there was no large enough magnetic field in nature, including those observed in magnetars, that could give visible effects or, conversely, that could be used to further improve \theta_{\rm bound}. On the other hand, recently it has been proposed that intense enough magnetic fields should be produced at the beginning of relativistic heavy ion collisions. We discuss here lepton pair production by free photons as one kind of signature of noncommutativity and Lorentz violation that could occur at RHIC or LHC. This allows us to obtain a more stringent bound on \theta, given by 10^{-3} \theta_{\rm bound}, if such "exotic" events do not occur.Comment: Five pages, no figures

    Magnetic Catalysis: A Review

    Full text link
    We give an overview of the magnetic catalysis phenomenon. In the framework of quantum field theory, magnetic catalysis is broadly defined as an enhancement of dynamical symmetry breaking by an external magnetic field. We start from a brief discussion of spontaneous symmetry breaking and the role of a magnetic field in its a dynamics. This is followed by a detailed presentation of the essential features of the phenomenon. In particular, we emphasize that the dimensional reduction plays a profound role in the pairing dynamics in a magnetic field. Using the general nature of underlying physics and its robustness with respect to interaction types and model content, we argue that magnetic catalysis is a universal and model-independent phenomenon. In support of this claim, we show how magnetic catalysis is realized in various models with short-range and long-range interactions. We argue that the general nature of the phenomenon implies a wide range of potential applications: from certain types of solid state systems to models in cosmology, particle and nuclear physics. We finish the review with general remarks about magnetic catalysis and an outlook for future research.Comment: 37 pages, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee. Version 2: references adde

    Holographic rho mesons in an external magnetic field

    Full text link
    We study the rho meson in a uniform magnetic field eB using a holographic QCD-model, more specifically a D4/D8/Dbar8 brane setup in the confinement phase at zero temperature with two quenched flavours. The parameters of the model are fixed by matching to corresponding dual field theory parameters at zero magnetic field. We show that the up- and down-flavour branes respond differently to the presence of the magnetic field in the dual QCD-like theory, as expected because of the different electromagnetic charge carried by up- and down-quark. We discuss how to recover the Landau levels, indicating an instability of the QCD vacuum at eB = m_rho^2 towards a phase where charged rho mesons are condensed, as predicted by Chernodub using effective QCD-models. We improve on these existing effective QCD-model analyses by also taking into account the chiral magnetic catalysis effect, which tells us that the constituent quark masses rise with eB. This turns out to increase the value of the critical magnetic field for the onset of rho meson condensation to eB = 1.1 m_rho^2 = 0.67 GeV^2. We briefly discuss the influence of pions, which turn out to be irrelevant for the condensation in the approximation made.Comment: 26 pages, 10 .pdf figures, v2: version accepted for publication in JHE

    Lattice QCD Simulations in External Background Fields

    Full text link
    We discuss recent results and future prospects regarding the investigation, by lattice simulations, of the non-perturbative properties of QCD and of its phase diagram in presence of magnetic or chromomagnetic background fields. After a brief introduction to the formulation of lattice QCD in presence of external fields, we focus on studies regarding the effects of external fields on chiral symmetry breaking, on its restoration at finite temperature and on deconfinement. We conclude with a few comments regarding the effects of electromagnetic background fields on gluodynamics.Comment: 31 pages, 10 figures, minor changes and references added. To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye
    corecore