190 research outputs found

    On the evolution of a large class of inhomogeneous scalar field cosmologies

    Get PDF
    The asymptotic behaviour of a family of inhomogeneous scalar field cosmologies with exponential potential is studied. By introducing new variables we can perform an almost complete analysis of the evolution of these cosmologies. Unlike the homogeneous case (Bianchi type solutions), when k^2<2 the models do not isotropize due to the presence of the inhomogeneitiesComment: 23 pages, 1 figure. Submitted to Classical and Quantum Gravit

    Bianchi Type I Universes with Causal Bulk Viscous Cosmological Fluid

    Get PDF
    We consider the dynamics of a causal bulk viscous cosmological fluid filled constantly decelerating Bianchi type I space-time. The matter component of the Universe is assumed to satisfy a linear barotropic equation of state and the state equation of the small temperature Boltzmann gas. The resulting cosmological models satisfy the condition of smallness of the viscous stress. The time evolution of the relaxation time, temperature, bulk viscosity coefficient and comoving entropy of the dissipative fluid is also obtained.Comment: 11 pages, 5 figures, accepted for publication in International Journal of Modern Physics

    Monodromy-data parameterization of spaces of local solutions of integrable reductions of Einstein's field equations

    Full text link
    For the fields depending on two of the four space-time coordinates only, the spaces of local solutions of various integrable reductions of Einstein's field equations are shown to be the subspaces of the spaces of local solutions of the ``null-curvature'' equations constricted by a requirement of a universal (i.e. solution independent) structures of the canonical Jordan forms of the unknown matrix variables. These spaces of solutions of the ``null-curvature'' equations can be parametrized by a finite sets of free functional parameters -- arbitrary holomorphic (in some local domains) functions of the spectral parameter which can be interpreted as the monodromy data on the spectral plane of the fundamental solutions of associated linear systems. Direct and inverse problems of such mapping (``monodromy transform''), i.e. the problem of finding of the monodromy data for any local solution of the ``null-curvature'' equations with given canonical forms, as well as the existence and uniqueness of such solution for arbitrarily chosen monodromy data are shown to be solvable unambiguously. The linear singular integral equations solving the inverse problems and the explicit forms of the monodromy data corresponding to the spaces of solutions of the symmetry reduced Einstein's field equations are derived.Comment: LaTeX, 33 pages, 1 figure. Typos, language and reference correction

    Adiabatic invariants and Mixmaster catastrophes

    Get PDF
    We present a rigorous analysis of the role and uses of the adiabatic invariant in the Mixmaster dynamical system. We propose a new invariant for the global dynamics which in some respects has an improved behaviour over the commonly used one. We illustrate its behaviour in a number of numerical results. We also present a new formulation of the dynamics via Catastrophe Theory. We find that the change from one era to the next corresponds to a fold catastrophe, during the Kasner shifts the potential is an Implicit Function Form whereas, as the anisotropy dissipates, the Mixmaster potential must become a Morse 0--saddle. We compare and contrast our results to many known works on the Mixmaster problem and indicate how extensions could be achieved. Further exploitation of this formulation may lead to a clearer understanding of the global Mixmaster dynamics.Comment: 24 pages, LaTeX, 5 figures (which can be obtained by sending a message to the first author), submitted to Phys.Rev.

    Numerical Investigation of Cosmological Singularities

    Get PDF
    Although cosmological solutions to Einstein's equations are known to be generically singular, little is known about the nature of singularities in typical spacetimes. It is shown here how the operator splitting used in a particular symplectic numerical integration scheme fits naturally into the Einstein equations for a large class of cosmological models and thus allows study of their approach to the singularity. The numerical method also naturally singles out the asymptotically velocity term dominated (AVTD) behavior known to be characteristic of some of these models, conjectured to describe others, and probably characteristic of a subclass of the rest. The method is first applied to the unpolarized Gowdy T3^3 cosmology. Exact pseudo-unpolarized solutions are used as a code test and demonstrate that a 4th order accurate implementation of the numerical method yields acceptable agreement. For generic initial data, support for the conjecture that the singularity is AVTD with geodesic velocity (in the harmonic map target space) < 1 is found. A new phenomenon of the development of small scale spatial structure is also observed. Finally, it is shown that the numerical method straightforwardly generalizes to an arbitrary cosmological spacetime on T3×RT^3 \times R with one spacelike U(1) symmetry.Comment: 37 pp +14 figures (not included, available on request), plain Te

    Two-photon imaging and quantum holography

    Get PDF
    It has been claimed that ``the use of entangled photons in an imaging system can exhibit effects that cannot be mimicked by any other two-photon source, whatever strength of the correlations between the two photons'' [A. F. Abouraddy, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, Phys. Rev. Lett. 87, 123602 (2001)]. While we believe that the cited statement is true, we show that the method proposed in that paper, with ``bucket detection'' of one of the photons, will give identical results for entangled states as for appropriately prepared classically correlated states.Comment: 4 pages, 2 figures, REVTe

    General-relativistic Model of Magnetically Driven Jet

    Get PDF
    The general scheme for the construction of the general-relativistic model of the magnetically driven jet is suggested. The method is based on the usage of the 3+1 MHD formalism. It is shown that the critical points of the flow and the explicit radial behavior of the physical variables may be derived through the jet ``profile function."Comment: 12 pages, LaTex, no figure

    Systematic analysis of SNR in bipartite Ghost Imaging with classical and quantum light

    Full text link
    We present a complete and exhaustive theory of signal-to-noise-ratio in bipartite ghost imaging with classical (thermal) and quantum (twin beams) light. The theory is compared with experiment for both twin beams and thermal light in a certain regime of interest

    Shannon dimensionality of quantum channels and its application to photon entanglement

    Get PDF
    We introduce the concept of Shannon dimensionality D as a new way to quantify bipartite entanglement as measured in an experiment. This is applied to orbital-angular-momentum entanglement of two photons, using two state analyzers composed of a rotatable angular-sector phase plate that is lens-coupled to a single-mode fiber. We can deduce the value of D directly from the observed two-photon coincidence fringe. In our experiment, D varies between 2 and 6, depending on the experimental conditions. We predict how the Shannon dimensionality evolves when the number of angular sectors imprinted in the phase plate is increased and anticipate that D = 50 is experimentally within reach.Comment: 4 pages, 3 figures, accepted for Physical Review Letter

    Symmetry reduced Einstein gravity and generalized sigma and chiral models

    Full text link
    Certain features associated with the symmetry reduction of the vacuum Einstein equations by two commuting, space-like Killing vector fields are studied. In particular, the discussion encompasses the equations for the Gowdy T3T^3 cosmology and cylindrical gravitational waves. We first point out a relation between the SL(2,R)SL(2,R) (or SO(3)) σ\sigma and principal chiral models, and then show that the reduced Einstein equations can be obtained from a dimensional reduction of the standard SL(2,R) sigma-model in three dimensions. The reduced equations can also be derived from the action of a `generalized' two dimensional SL(2,R) sigma-model with a time dependent constraint. We give a Hamiltonian formulation of this action, and show that the Hamiltonian evolution equations for certain phase space variables are those of a certain generalization of the principal chiral model. Using these Hamiltonian equations, we give a prescription for obtaining an infinite set of constants of motion explicitly as functionals of the space-time metric variables.Comment: 17 pages, latex, reference added, a subtlety commented on; to appear in Int. J. Mod. Phys.
    • 

    corecore